首页> 外文期刊>Computers and Geotechnics >A smooth hyperbolic approximation to the Generalised Classical yield function, including a true inner rounding of the Mohr-Coulomb deviatoric section
【24h】

A smooth hyperbolic approximation to the Generalised Classical yield function, including a true inner rounding of the Mohr-Coulomb deviatoric section

机译:广义古典屈服函数的光滑双曲近似值,包括Mohr-Coulomb偏导截面的真实内部舍入

获取原文
获取原文并翻译 | 示例

摘要

A new yield function recently introduced by Lagioia and Panteghini (2016), herein referred to as the Generalised Classical (GC) yield function, combines a series of criteria commonly used in geotechnical analysis into a single equation, including those of Tresca, Mohr-Coulomb and Matsuoka-Nakai. This makes for efficient implementation of multiple criteria into finite element software, and in this paper two key improvements are made to further enhance the usefulness of the GC yield function. The first is the development of a new expression for the shape parameter gamma, corresponding to the so-called 'Inner Mohr-Coulomb' option, which ensures that a true inner rounding of the hexagonal Mohr-Coulomb deviatoric section is always obtained. The second is the introduction of a hyperbolic rounding to eliminate a discontinuity which can occur at the tip in the meridional section of the GC yield surface. The resulting yield surface is at least C-2 continuous everywhere, provided a rounded criterion is selected, and can thus be used in consistent tangent finite element formulations. The results of finite element analyses carried out for two benchmark problems (a thick cylinder and a rigid strip footing) demonstrate the benefits of the rounding techniques in the new yield surface. Comparisons are made with the original yield surface and also the Hyperbolic Rounded Mohr-Coulomb (HRMC) yield surface originally developed by Abbo and Sloan (1995).
机译:Lagioia和Panteghini(2016)最近引入了一个新的收益函数,这里称为广义古典(GC)收益函数,它将岩土工程分析中常用的一系列标准组合到一个方程中,包括Tresca,Mohr-Coulomb的那些和松冈中井这使得可以将多个条件有效地实施到有限元软件中,并且在本文中进行了两项关键改进,以进一步增强GC产量函数的实用性。首先是针对形状参数gamma的新表达式的开发,该表达式对应于所谓的“内部Mohr-Coulomb”选项,该选项确保始终获得六角形Mohr-Coulomb偏斜截面的真实内部舍入。第二种方法是引入双曲线舍入,以消除可能在GC屈服面子午线部分的尖端出现的不连续性。如果选择了四舍五入的准则,则所得的屈服面在任何地方至少都是C-2连续的,因此可以用于一致的切线有限元公式中。对两个基准问题(厚圆柱体和刚性带基脚)进行的有限元分析结果表明,在新的屈服面中采用倒圆技术是有好处的。与原始屈服面以及由Abbo和Sloan(1995)最初开发的双曲圆形Mohr-Coulomb(HRMC)屈服面进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号