首页> 外文期刊>Computers and Geotechnics >Evolutionary metaheuristic intelligence to simulate tensile loads in reinforcement for geosynthetic-reinforced soil structures
【24h】

Evolutionary metaheuristic intelligence to simulate tensile loads in reinforcement for geosynthetic-reinforced soil structures

机译:进化元启发式智能方法,模拟土工合成材料加筋的土结构中的拉伸载荷

获取原文
获取原文并翻译 | 示例

摘要

The accurate estimation of reinforcement tensile loads is crucial for the evaluation of the internal stabilities of geosynthetic-reinforced soil (GRS) structures. This study developed an evolutionary metaheuristic intelligence model for efficiently and accurately estimating reinforcement loads. The proposed model improves the prediction capability of the firefly algorithm (FA) by integrating intelligent components, namely, a chaotic map, an adaptive inertia weight, and a Levy flight. The enhanced FA is then used to optimise the hyperparameters for a least squares support vector regression model. The proposed model was validated using a database of 15 wall case studies (94 data points in total) via a cross-validation algorithm. The method was then compared with conventional prediction methods in terms of the accuracy for predicting the reinforcement tensile loads of GRS structures. The cross-validation results demonstrated that the proposed model has a superior accuracy and mean absolute percentage errors lower than 10%. Moreover, a comparison with the baseline models and empirical methods indicate that the evolutionary metaheuristic intelligence model provides a significant improvement in terms of the root mean square errors (by 63.61-92.30%). This study validates the effectiveness of the proposed model for predicting reinforcement tensile loads and its feasibility for facilitating early designs of GRS structures. (C) 2015 Elsevier Ltd. All rights reserved.
机译:钢筋拉伸载荷的准确估算对于评估土工合成纤维(GRS)结构的内部稳定性至关重要。这项研究开发了一种进化的元启发式智能模型,可以有效,准确地估计钢筋的载荷。所提出的模型通过集成智能组件,即混沌映射,自适应惯性权重和征航,提高了萤火虫算法(FA)的预测能力。然后,将增强的FA用于最小二乘支持向量回归模型的超参数优化。通过交叉验证算法,使用15个案例研究的数据库(总共94个数据点)对提出的模型进行了验证。然后,就预测GRS结构的增强拉伸载荷的准确性而言,将该方法与常规预测方法进行了比较。交叉验证结果表明,所提出的模型具有较高的准确性,并且平均绝对百分比误差低于10%。此外,与基线模型和经验方法的比较表明,进化元启发式智力模型在均方根误差方面有显着改善(降低了63.61-92.30%)。这项研究验证了所提出的模型在预测钢筋拉伸载荷方面的有效性及其在促进早期设计GRS结构方面的可行性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号