首页> 外文期刊>Computers and Geotechnics >Characterization of strength and damage of hard rock pillars using a synthetic rock mass method
【24h】

Characterization of strength and damage of hard rock pillars using a synthetic rock mass method

机译:用合成岩体方法表征硬岩柱的强度和破坏

获取原文
获取原文并翻译 | 示例

摘要

In this research a 3D Synthetic Rock Mass (SRM) method is used to numerically characterize the strength and damage of hard rock pillars. The SRM is an integrated model incorporating a Discrete Fracture Network (DFN) within a Particle Flow Code 3D (PFC3D) particle assembly. Based on the numerical results of a joint-free pillar model, laterally fixed loading platens are suggested to simulate uniaxial compression tests on rock pillars. An internal-strain loading method is meanwhile used to ensure more realistic model behaviour. The peak strength, post-peak strain-softening gradient and deformation modulus of a series of jointed pillar models are then quantified, in order to investigate the effects of the inserted joint sets. The simulated peak strengths demonstrate a U-shape relationship when the joint sets are rotated; the peak strength also decreases with increasing joint size. A brittle post-peak behaviour is observed for pillar models with vertical joint sets of low persistence, the post-peak behaviour becoming more ductile when the joint sets are inclined and of higher persistence. A correlation is identified between the post-peak pillar behaviour and the simulated tensile cracking events, where a brittle post-peak corresponds to a high cracking rate. The effects of the joint sets on the pillar deformation modulus are observed to be similar to the effects on the pillar peak strength. Particular attention is given to the characterization of the crack initiation stress (sigma(ci)) and crack damage stress (sigma(cd)) thresholds of each pillar model, where the ratio of the crack initiation stress/peak strength is between 03 and 0.45, and the ratio of the crack damage stress/peak strength is between 0.75 and 0.98. The simulated cracks are compared between the jointed pillars and detailed cracking modes are plotted as 3D views and as 2D thin layers for selected pillar models. (C) 2014 Elsevier Ltd. All rights reserved.
机译:在这项研究中,使用3D合成岩体(SRM)方法对硬岩柱的强度和损伤进行数值表征。 SRM是一个集成模型,该模型在粒子流代码3D(PFC3D)粒子组件中合并了离散断裂网络(DFN)。根据无节理柱模型的数值结果,建议采用侧向固定的压板模拟岩石柱上的单轴压缩试验。同时,使用内部应变加载方法来确保更真实的模型行为。然后,对一系列节理柱模型的峰值强度,峰后应变软化梯度和变形模量进行了量化,以研究插入节理的影响。当关节组旋转时,模拟的峰值强度显示出U形关系。峰值强度也随着接头尺寸的增加而降低。对于具有低持久性的垂直关节组的柱模型,观察到了脆的峰后行为,当关节组倾斜且具有更高的持久性时,峰后行为变得更具延展性。在峰后柱的行为和模拟的拉伸断裂事件之间确定了相关性,其中脆的峰后对应于高的断裂速率。观察到接头组对支柱变形模量的影响类似于对支柱峰值强度的影响。特别注意每个支柱模型的裂纹萌生应力(sigma(ci))和裂纹损伤应力(sigma(cd))阈值的表征,其中裂纹萌生应力/峰值强度之比在03和0.45之间,裂纹破坏应力/峰值强度之比在0.75至0.98之间。在连接的柱子之间比较了模拟的裂缝,并针对选定的柱子模型将详细的裂纹模式绘制为3D视图和二维薄层。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号