首页> 外文期刊>Computer vision and image understanding >An integrated range-sensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery
【24h】

An integrated range-sensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery

机译:集成的范围感应,分段和配准框架,用于表征图像引导手术中的术中脑内变形

获取原文
获取原文并翻译 | 示例
           

摘要

Image-guided surgery (IGS) is a technique for localizing anatomical structures on the basis of volumetric image data and for determining the optimal surgical path to reach these structures, by the means of a localization device, or probe, whose position is tracked over time. The usefulness of this technology hinges on the accuracy of the transformation between the image volume and the space occupied by the patient anatomy and spanned by the probe. Unfortunately, in neurosurgery this transformation can be degraded by intra-surgical brain shift, which often measures more than 10 mm and can exceed 25 mm. We propose a method for characterizing brain shift that is based on non-rigid surface registration, and can be combined with a constitutively realistic finite element approach for volumetric displacement estimation. The proposed registration method integrates in a unified framework all of the stages required to estimate the movement of the cortical surface in the operating room: model-based segmentation of the pre-operative brain surface in magnetic resonance image data, range-sensing of the cortex in the OR, range-MR rigid transformation computation, and range-based non-rigid brain motion estimation. The brain segmentation technique is an adaptation of the surface evolution model. Its convergence to the brain boundary is the result of a speed term restricted to white and grey matter voxels made explicit by a classifier, and the final result is post-processed to yield a Closest Point Map of the brain surface in MR space. In turn, this Closest Point Map is used to produce the homologous pairs required to determine a highly efficient, 2D spline-based, Iterative Closest Point (ICP) non-rigid surface registration. The baseline for computing intra-operative brain displacement, as well as the initial starting point of the nonrigid ICP registration, is determined by a very good rigid range-MR transformation, produced by a simple procedure for relating the range coordinate system to that of the probe, and ultimately to that of the MR volume. (C) 2003 Elsevier Science (USA). All rights reserved. [References: 55]
机译:图像引导外科手术(IGS)是一种技术,用于根据体图像数据对解剖结构进行定位,并通过定位设备或探头来确定到达这些结构的最佳手术路径,其位置随时间推移。该技术的有用性取决于图像体积与患者解剖结构所占据的空间以及探头所跨越的空间之间的转换的准确性。不幸的是,在神经外科中,这种转变可以通过手术中的脑部移位而退化,这种移位通常超过10毫米,甚至可以超过25毫米。我们提出了一种基于非刚性表面配准的表征脑移位的方法,该方法可以与本构的逼真的有限元方法相结合进行体积位移估计。所提出的配准方法在一个统一的框架中集成了估计手术室中皮质表面运动所需的所有阶段:磁共振图像数据中术前大脑表面的基于模型的分割,皮质的范围感应在OR中,进行范围MR刚性变换计算,以及基于范围的非刚性脑运动估计。脑分割技术是对表面演化模型的一种适应。它收敛到大脑边界是一个速度项的结果,该速度项被分类器明确地限定为白和灰质体素,最终结果经过后处理以生成MR空间中大脑表面的最近点图。反过来,此最接近点贴图用于生成确定高效,基于2D样条的迭代最接近点(ICP)非刚性表面配准所需的同源对。计算术中脑位移的基线以及非刚性ICP配准的初始起点是由非常好的刚性范围-MR转换确定的,该转换是通过将距离坐标系与目标坐标系相关联的简单过程生成的探查,最终达到MR量。 (C)2003 Elsevier Science(美国)。版权所有。 [参考:55]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号