首页> 外文期刊>Computer vision and image understanding >Accelerated hardware video object segmentation: From foreground detection to connected components labelling
【24h】

Accelerated hardware video object segmentation: From foreground detection to connected components labelling

机译:加速的硬件视频对象分割:从前景检测到连接的组件标记

获取原文
获取原文并翻译 | 示例

摘要

This paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of fore-ground pixels with the labelling of objects using a connected components algorithm. The background models are based on 24-bit RGB values and 8-bit gray scale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The real-time con-nected component labelling algorithm, also designed for FPGA implementation, run-length encodes the output of the background subtraction, and performs connected component analysis on this representa-tion. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels. The two algorithms are pipelined together for maximum efficiency.
机译:本文演示了如何使用单片FPGA分割视频序列中的运动对象。该系统维护高度准确的背景模型,并使用连接的组件算法将前摄像素的检测与对象标记集成在一起。背景模型基于24位RGB值和8位灰度强度值。提出了一种使用单个FPGA芯片和四个RAM块的多峰背景差分算法。实时连接的组件标记算法,也为FPGA实现而设计,游程对背景减法的输出进行编码,并对此表示进行连接的组件分析。行程编码与算法的其他部分一起并行执行。由于游程长度的数量通常小于像素的数量,因此顺序操作被最小化。两种算法通过流水线结合在一起以实现最大效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号