首页> 外文期刊>Computer vision and image understanding >Deformable probability maps: Probabilistic shape and appearance-based object segmentation
【24h】

Deformable probability maps: Probabilistic shape and appearance-based object segmentation

机译:可变形的概率图:概率形状和基于外观的对象分割

获取原文
获取原文并翻译 | 示例

摘要

We present the Deformable Probability Maps (DPMs) for object segmentation, which are graphical learning models incorporating properties of deformable models into discriminative classification. The DPM configuration is described by probabilistic energy functionals, which incorporate shape and appearance, and determine boundary smoothness, image features consistency, and topology with respect to the image salient edges. Similarly to deformable models, DPMs are dynamic, and their evolution is solved as a MAP inference problem. DPMs offer two major advantages: (i) they extend the Markovian property in the image domain to incorporate local shape constraints, similar to the known internal energy of deformable models, and therefore provide increased robustness in capturing objects with fuzzy boundaries; (ii) during their evolution, DPMs update the region statistics, and therefore they are robust to image feature variations. In our experiments we evaluate the DPMs' performance in a variety of images, while we compare them with existing deformable models and classification approaches on standard benchmark datasets.
机译:我们提出了用于对象分割的可变形概率图(DPM),这是将可变形模型的属性纳入判别分类的图形学习模型。 DPM配置由概率能量函数描述,该函数结合了形状和外观,并确定了边界平滑度,图像特征一致性以及相对于图像显着边缘的拓扑。与可变形模型相似,DPM是动态的,其演变过程作为MAP推理问题得以解决。 DPM具有两个主要优点:(i)与已知的可变形模型的内部能量相似,它们在图像域中扩展了马尔可夫属性以包含局部形状约束,因此在捕获具有模糊边界的对象时提供了更高的鲁棒性; (ii)DPM在其演变过程中会更新区域统计信息,因此它们对于图像特征变化具有鲁棒性。在我们的实验中,我们评估了DPM在各种图像中的性能,同时将它们与现有的可变形模型和标准基准数据集上的分类方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号