首页> 外文期刊>Computer vision and image understanding >Single and sparse view 3D reconstruction by learning shape priors
【24h】

Single and sparse view 3D reconstruction by learning shape priors

机译:通过学习形状先验来进行单一和稀疏视图3D重建

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we aim to reconstruct free-form 3D models from only one or few silhouettes by learning the prior knowledge of a specific class of objects. Instead of heuristically proposing specific regularities and defining parametric models as previous research, our shape prior is learned directly from existing 3D models under a framework based on the Gaussian Process Latent Variable Model (GPLVM). The major contributions of the paper include: (1) a framework for learning the shape prior of the 3D objects, which requires no heuristic of the object, and can be easily generalized to handle various categories of 3D objects and (2) novel probabilistic inference schemes for automatically reconstructing 3D shapes from the silhouette(s) in the single view or sparse views. Qualitative and quantitative experimental results on both synthetic and real data demonstrate the efficacy of our new approach.
机译:在本文中,我们旨在通过学习特定对象类别的先验知识,仅从一个或几个轮廓中重建自由形式的3D模型。无需试探性地提出特定的规律性并定义参数模型作为先前的研究,我们的形状先验是在基于高斯过程潜在变量模型(GPLVM)的框架下直接从现有3D模型中学习的。该论文的主要贡献包括:(1)用于学习3D对象先于形状的框架,该框架不需要启发对象,并且可以轻松地推广到处理各种3D对象的类别,以及(2)新颖的概率推理用于从单个视图或稀疏视图中的轮廓自动重建3D形状的方案。综合和真实数据的定性和定量实验结果证明了我们新方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号