首页> 外文期刊>Computer vision and image understanding >A semantic-based probabilistic approach for real-time video event recognition
【24h】

A semantic-based probabilistic approach for real-time video event recognition

机译:用于实时视频事件识别的基于语义的概率方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach for real-time video event recognition that combines the accuracy and descriptive capabilities of, respectively, probabilistic and semantic approaches. Based on a state-of-art knowledge representation, we define a methodology for building recognition strategies from event descriptions that consider the uncertainty of the low-level analysis. Then, we efficiently organize such strategies for performing the recognition according to the temporal characteristics of events. In particular, we use Bayesian Networks and probabilistically-extended Petri Nets for recognizing, respectively, simple and complex events. For demonstrating the proposed approach, a framework has been implemented for recognizing human-object interactions in the video monitoring domain. The experimental results show that our approach improves the event recognition performance as compared to the widely used deterministic approach.
机译:本文提出了一种实时视频事件识别的方法,该方法结合了概率方法和语义方法的准确性和描述能力。基于最先进的知识表示,我们定义了一种从事件描述中构建识别策略的方法,该方法考虑了底层分析的不确定性。然后,我们根据事件的时间特征有效地组织用于执行识别的策略。特别是,我们使用贝叶斯网络和概率扩展的Petri网分别识别简单事件和复杂事件。为了演示所提出的方法,已经实现了用于识别视频监控领域中人与对象交互的框架。实验结果表明,与广泛使用的确定性方法相比,我们的方法提高了事件识别性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号