首页> 外文期刊>Computer vision and image understanding >Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations
【24h】

Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations

机译:基于序列模型的视觉特征和空间关系驱动的图像结构分割和识别

获取原文
获取原文并翻译 | 示例

摘要

A sequential segmentation framework, where objects in an image are successively segmented, generally raises some questions about the "best" segmentation sequence to follow and/or how to avoid error propagation. In this work, we propose original approaches to answer these questions in the case where the objects to segment are represented by a model describing the spatial relations between objects. The process is guided by a criterion derived from visual attention, and more precisely from a saliency map, along with some spatial information to focus the attention. This criterion is used to optimize the segmentation sequence. Spatial knowledge is also used to ensure the consistency of the results and to allow backtracking on the segmentation order if needed. The proposed approach was applied for the segmentation of internal brain structures in magnetic resonance images. The results show the relevance of the optimization criteria and the interest of the backtracking procedure to guarantee good and consistent results.
机译:在图像中的对象被连续分割的顺序分割框架中,通常会提出一些有关要遵循的“最佳”分割顺序和/或如何避免错误传播的问题。在这项工作中,我们提出了原始方法来回答这些问题,其中要分割的对象由描述对象之间空间关系的模型表示。该过程由视觉注意力(更确切地说是显着性地图)以及一些用于集中注意力的空间信息得出的准则指导。该标准用于优化分割顺序。空间知识还用于确保结果的一致性,并在需要时允许对细分顺序进行回溯。该方法被应用于磁共振图像中大脑内部结构的分割。结果表明优化标准的相关性和回溯程序的兴趣,以保证良好和一致的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号