首页> 外文期刊>Computer vision and image understanding >Finite asymmetric generalized Gaussian mixture models learning for infrared object detection
【24h】

Finite asymmetric generalized Gaussian mixture models learning for infrared object detection

机译:红外目标检测的有限不对称广义高斯混合模型学习

获取原文
获取原文并翻译 | 示例

摘要

The interest in automatic surveillance and monitoring systems has been growing over the last years due to increasing demands for security and law enforcement applications. Although, automatic surveillance systems have reached a significant level of maturity with some practical success, it still remains a challenging problem due to large variation in illumination conditions. Recognition based only on the visual spectrum remains limited in uncontrolled operating environments such as outdoor situations and low illumination conditions. In the last years, as a result of the development of low-cost infrared cameras, night vision systems have gained more and more interest, making infrared (IR) imagery as a viable alternative to visible imaging in the search for a robust and practical identification system. Recently, some researchers have proposed the fusion of data recorded by an IR sensor and a visible camera in order to produce information otherwise not obtainable by viewing the sensor outputs separately. In this article, we propose the application of finite mixtures of multidimensional asymmetric generalized Gaussian distributions for different challenging tasks involving IR images. The advantage of the considered model is that it has the required flexibility to fit different shapes of observed non-Gaussian and asymmetric data. In particular, we present a highly efficient expectation-maximization (EM) algorithm, based on minimum message length (MML) formulation, for the unsupervised learning of the proposed model's parameters. In addition, we study its performance in two interesting applications namely pedestrian detection and multiple target tracking. Furthermore, we examine whether fusion of visual and thermal images can increase the overall performance of surveillance systems.
机译:近年来,由于对安全和执法应用程序的需求不断增长,对自动监视和监视系统的兴趣不断增长。尽管自动监视系统已经达到了相当成熟的水平,并取得了一些实际的成功,但是由于照明条件的变化很大,它仍然是一个具有挑战性的问题。在不受控制的操作环境(例如室外情况和低照度条件)下,仅基于视觉光谱的识别仍然受到限制。近年来,由于低成本红外摄像机的发展,夜视系统越来越引起人们的兴趣,使红外(IR)图像成为可视成像的可行替代方案,以寻求可靠而实用的识别方法系统。最近,一些研究人员提出将红外传感器和可见摄像机记录的数据融合在一起,以产生原本无法通过单独查看传感器输出获得的信息。在本文中,我们提出多维不对称广义高斯分布的有限混合体在涉及红外图像的不同挑战性任务中的应用。所考虑的模型的优点在于,它具有所需的灵活性,可以拟合观察到的非高斯和非对称数据的不同形状。特别是,我们提出了一种基于最小消息长度(MML)公式的高效期望最大化(EM)算法,用于无监督学习所提出模型的参数。此外,我们在两个有趣的应用中研究了它的性能,即行人检测和多目标跟踪。此外,我们检查了视觉图像和热图像的融合是否可以提高监视系统的整体性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号