首页> 外文期刊>Computer vision and image understanding >An on-line, real-time learning method for detecting anomalies in videos using spatio-temporal compositions
【24h】

An on-line, real-time learning method for detecting anomalies in videos using spatio-temporal compositions

机译:一种使用时空构图检测视频异常的在线实时学习方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an approach for detecting suspicious events in videos by using only the video itself as the training samples for valid behaviors. These salient events are obtained in real-time by detecting anomalous spatio-temporal regions in a densely sampled video. The method codes a video as a compact set of spatio-temporal volumes, while considering the uncertainty in the codebook construction. The spatio-temporal compositions of video volumes are modeled using a probabilistic framework, which calculates their likelihood of being normal in the video. This approach can be considered as an extension of the Bag of Video words (BOV) approaches, which represent a video as an order-less distribution of video volumes. The proposed method imposes spatial and temporal constraints on the video volumes so that an inference mechanism can estimate the probability density functions of their arrangements. Anomalous events are assumed to be video arrangements with very low frequency of occurrence. The algorithm is very fast and does not employ background subtraction, motion estimation or tracking. It is also robust to spatial and temporal scale changes, as well as some deformations. Experiments were performed on four video datasets of abnormal activities in both crowded and non-crowded scenes and under difficult illumination conditions. The proposed method outperformed all other approaches based on BOV that do not account for contextual information.
机译:本文提出了一种仅通过将视频本身用作有效行为的训练样本来检测视频中可疑事件的方法。通过检测密集采样视频中的异常时空区域,可以实时获取这些显着事件。该方法将视频编码为一组紧凑的时空量,同时考虑了码本构造的不确定性。视频量的时空组成是使用概率框架建模的,该概率框架计算它们在视频中正常的可能性。该方法可以视为视频词袋(BOV)方法的扩展,该方法将视频表示为视频量的无序分布。所提出的方法在视频量上施加了空间和时间上的约束,使得推理机制可以估计其排列的概率密度函数。异常事件被认为是发生频率非常低的视频安排。该算法非常快,并且不采用背景减法,运动估计或跟踪。它对于时空尺度变化以及某些变形也具有鲁棒性。在拥挤和不拥挤的场景中以及在困难的照明条件下,对四个异常活动的视频数据集进行了实验。所提出的方法优于所有其他基于BOV的方法,这些方法都不能解释上下文信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号