首页> 外文期刊>Computer vision and image understanding >A method for the evaluation of projective geometric consistency in weakly calibrated stereo with application to point matching
【24h】

A method for the evaluation of projective geometric consistency in weakly calibrated stereo with application to point matching

机译:一种评估弱校正立体声中投影几何一致性的方法及其在点匹配中的应用

获取原文
获取原文并翻译 | 示例

摘要

We present a novel method that evaluates the geometric consistency of putative point matches in weakly calibrated settings, i.e. when the epipolar geometry but not the camera calibration is known, using only the point coordinates as information. The main idea behind our approach is the fact that each point correspondence in our data belongs to one of two classes (inliers/outlier). The classification of each point match relies on the histogram of a quantity representing the difference between cross ratios derived from a construction involving 6-tuples of point matches. Neither constraints nor scenario dependent parameters/thresholds are needed. Even for few candidate point matches the ensemble of 6-tuples containing each of them turns to provide statistically reliable histograms that prove to discriminate between inliers and outliers. In fact, in most cases a random sampling among this population is sufficient. Nevertheless, the accuracy of the method is positively correlated to its sampling density leading to an accuracy versus resulting computational complexity trade-off. Theoretical analysis and experiments are given that show the consistent performance of the proposed classification method when applied in inlier/outlier discrimination. The achieved accuracy is favourably evaluated against established methods that employ geometric only information, i.e. those relying on the Sampson, the algebraic and the symmetric epipolar distances. Finally, we also present an application of our scheme in uncalibrated stereo inside a RANSAC framework and compare it to the same as above methods.
机译:我们提出了一种新颖的方法,该方法可在弱校准的设置中评估假定的点匹配的几何一致性,即仅使用点坐标作为信息时即可知道对极几何而不是相机校准。我们的方法背后的主要思想是这样一个事实,即数据中的每个点对应关系属于两个类别(内部值/离群值)之一。每个点匹配的分类依赖于表示直方图的数量,该数量表示从包含6个元组的点匹配的构造中得出的交叉比率之间的差异。既不需要约束,也不需要依赖场景的参数/阈值。即使只有很少的候选点匹配,包含每个元组的6元组的集合也可以提供统计上可靠的直方图,从而证明可以区分内在值和离群值。实际上,在大多数情况下,在此总体中进行随机抽样就足够了。然而,该方法的准确性与它的采样密度呈正相关,从而导致准确性与计算复杂性之间的权衡。理论分析和实验结果表明,本文提出的分类方法在内部/离群值判别中具有一致的性能。相对于仅采用几何信息的既定方法,即那些依赖于桑普森,代数和对称对极距离的方法,可以很好地评估获得的精度。最后,我们还介绍了我们的方案在RANSAC框架内的未校准立体声中的应用,并将其与上述方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号