首页> 外文期刊>Computer vision and image understanding >Efficient modeling of visual saliency based on local sparse representation and the use of hamming distance
【24h】

Efficient modeling of visual saliency based on local sparse representation and the use of hamming distance

机译:基于局部稀疏表示和汉明距离使用的可视显着性高效建模

获取原文
获取原文并翻译 | 示例

摘要

Modeling of visual saliency is an important domain of research in computer vision, given the significant role of attention mechanisms during neural processing of visual information. This work presents a new approach for the construction of image representations of salient locations, generally known as saliency maps. The developed method is based on an efficient comparison scheme for the local sparse representations deriving from non-overlapping image patches. The sparse coding stage is implemented via an overcomplete dictionary trained with a soft-competitive bio-inspired algorithm and the use of natural images. The resulting local sparse codes are pairwise compared using the Hamming distance as a gauge of their co-activation. The calculated distances are used to quantify the saliency strength for each individual patch, and then, the saliency values are non-linearly filtered to form the final map. The evaluation results obtained on four image databases, demonstrate the competitive performance of the proposed approach compared to several state-of-the-art saliency modeling algorithms. More importantly, the proposed scheme is simple, efficient, and robust under a variety of visual conditions. Thus, it appears as an ideal solution for a hardware implementation of a frontend saliency modeling module in a computer vision system.
机译:考虑到注意力机制在视觉信息的神经处理中的重要作用,视觉显着性建模是计算机视觉研究的重要领域。这项工作提出了一种构造显着位置图像表示的新方法,通常称为显着图。所开发的方法基于一种有效的比较方案,用于从非重叠图像补丁中获取的局部稀疏表示。稀疏编码阶段是通过使用软竞争性生物启发算法训练的过完整字典以及自然图像的使用来实现的。使用汉明距离作为它们共同激活的量度,将生成的局部稀疏代码进行成对比较。计算出的距离用于量化每个单独贴片的显着性强度,然后对显着性值进行非线性滤波以形成最终图。在四个图像数据库上获得的评估结果表明,与几种最新的显着性建模算法相比,该方法具有竞争优势。更重要的是,所提出的方案在各种视觉条件下都是简单,有效和健壮的。因此,它似乎是计算机视觉系统中前端显着性建模模块的硬件实现的理想解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号