首页> 外文期刊>Computer vision and image understanding >A generalized graph reduction framework for interactive segmentation of large images
【24h】

A generalized graph reduction framework for interactive segmentation of large images

机译:大图像交互式分割的广义图归约框架

获取原文
获取原文并翻译 | 示例

摘要

The speed of graph-based segmentation approaches, such as random walker (RW) and graph cut (GC), depends strongly on image size. For high-resolution images, the time required to compute a segmentation based on user input renders interaction tedious. We propose a novel method, using an approximate contour sketched by the user, to reduce the graph before passing it on to a segmentation algorithm such as RW or GC. This enables a significantly faster feedback loop. The user first draws a rough contour of the object to segment. Then, the pixels of the image are partitioned into "layers" (corresponding to different scales) based on their distance from the contour. The thickness of these layers increases with distance to the contour according to a Fibonacci sequence. An initial segmentation result is rapidly obtained after automatically generating foreground and background labels according to a specifically selected layer; all vertices beyond this layer are eliminated, restricting the segmentation to regions near the drawn contour. Further foreground/background labels can then be added by the user to refine the segmentation. All iterations of the graph-based segmentation benefit from a reduced input graph, while maintaining full resolution near the object boundary. A user study with 16 participants was carried out for RW segmentation of a multi-modal dataset of 22 medical images, using either a standard mouse or a stylus pen to draw the contour. Results reveal that our approach significantly reduces the overall segmentation time compared with the status quo approach (p < 0.01). The study also shows that our approach works well with both input devices. Compared to super-pixel graph reduction, our approach provides full resolution accuracy at similar speed on a high-resolution benchmark image with both RW and GC segmentation methods. However, graph reduction based on super-pixels does not allow interactive correction of clustering errors. Finally, our approach can be combined with super-pixel clustering methods for further graph reduction, resulting in even faster segmentation.
机译:基于图的分割方法(例如随机游走(RW)和图切割(GC))的速度在很大程度上取决于图像大小。对于高分辨率图像,基于用户输入计算分割所需的时间使交互变得乏味。我们提出了一种新方法,即使用用户绘制的近似轮廓线来减少图形,然后再将其传递给分段算法(例如RW或GC)。这样可以显着加快反馈循环。用户首先绘制对象的粗略轮廓以进行分割。然后,根据图像像素与轮廓的距离将其划分为“层”(对应于不同的比例)。这些层的厚度根据斐波那契数列随距轮廓的距离而增加。根据特定选择的图层自动生成前景和背景标签后,可以快速获得初始分割结果;消除了该层以外的所有顶点,从而将分割限制在绘制轮廓附近的区域。然后,用户可以添加其他前景/背景标签以细化分段。基于图的分割的所有迭代都受益于缩小的输入图,同时在对象边界附近保持完整分辨率。使用标准鼠标或手写笔绘制轮廓,对16名参与者进行了一项用户研究,以对22种医学图像的多模式数据集进行RW分割。结果表明,与现状方法相比,我们的方法显着减少了整体细分时间(p <0.01)。该研究还表明,我们的方法对于两种输入设备均适用。与超像素图缩减相比,我们的方法使用RW和GC分割方法,可以在高分辨率基准图像上以相似的速度提供全分辨率精度。但是,基于超像素的图形缩小不允许对聚类错误进行交互式校正。最后,我们的方法可以与超像素聚类方法相结合以进一步减少图形,从而实现更快的分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号