首页> 外文期刊>Computer vision and image understanding >An occlusion-aware particle filter tracker to handle complex and persistent occlusions
【24h】

An occlusion-aware particle filter tracker to handle complex and persistent occlusions

机译:可以识别咬合的粒子过滤器跟踪器,用于处理复杂且持久的咬合

获取原文
获取原文并翻译 | 示例

摘要

Although appearance-based trackers have been greatly improved in the last decade, they still struggle with challenges that are not fully resolved. Of these challenges, occlusions, which can be long lasting and of a wide variety, are often ignored or only partly addressed due to the difficulty in their treatments. To address this problem, in this study, we propose an occlusion-aware particle filter framework that employs a probabilistic model with a latent variable representing an occlusion flag. The proposed framework prevents losing the target by prediction of emerging occlusions, updates the target template by shifting relevant information, expands the search area for an occluded target, and grants quick recovery of the target after occlusion. Furthermore, the algorithm employs multiple features from the color and depth domains to achieve robustness against illumination changes and clutter, so that the probabilistic framework accommodates the fusion of those features. This method was applied to the Princeton RGBD Tracking Dataset, and the performance of our method with different sets of features was compared with those of the state-of-the-art trackers. The results revealed that our method outperformed the existing RGB and RGBD trackers by successfully dealing with different types of occlusions.
机译:尽管基于外观的跟踪器在过去十年中已得到了很大的改进,但它们仍在面对尚未完全解决的挑战。在这些挑战中,由于治疗的困难,可能会长期存在且种类繁多的闭塞常常被忽略或只能部分解决。为了解决这个问题,在本研究中,我们提出了一种可识别阻塞的粒子过滤器框架,该框架采用具有表示阻塞标志的潜在变量的概率模型。提出的框架可防止通过预测出现的遮挡而丢失目标,通过移动相关信息来更新目标模板,扩大遮挡目标的搜索区域,并在遮挡后快速恢复目标。此外,该算法采用了色域和深度域中的多个特征,以实现对照明变化和杂波的鲁棒性,因此概率框架可适应这些特征的融合。将该方法应用于普林斯顿RGBD跟踪数据集,并将我们具有不同功能集的方法的性能与最新的跟踪器进行了比较。结果表明,通过成功处理不同类型的遮挡,我们的方法优于现有的RGB和RGBD跟踪器。

著录项

  • 来源
    《Computer vision and image understanding》 |2016年第9期|81-94|共14页
  • 作者单位

    Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto, 606-8501, Japan;

    Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto, 606-8501, Japan;

    Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto, 606-8501, Japan;

    Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto, 606-8501, Japan;

    Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto, 606-8501, Japan;

    Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto, 606-8501, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Particle filter tracker; Explicit occlusion handling; RGBD tracking;

    机译:粒子过滤器跟踪器;显式遮挡处理;RGBD追踪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号