首页> 外文期刊>Computer vision and image understanding >Learning hierarchical 3D kernel descriptors for RGB-D action recognition
【24h】

Learning hierarchical 3D kernel descriptors for RGB-D action recognition

机译:学习用于RGB-D动作识别的分层3D内核描述符

获取原文
获取原文并翻译 | 示例

摘要

Human action recognition is an important and challenging task due to intra-class variation and complexity of actions which is caused by diverse style and duration in performed action. Previous works mostly concentrate on either depth or RGB data to build an understanding about the shape and movement cues in videos but fail to simultaneously utilize rich information in both channels. In this paper we study the problem of RGB-D action recognition from both RGB and depth sequences using kernel descriptors. Kernel descriptors provide an unified and elegant framework to turn pixel-level attributes into descriptive information about the performed actions in video. We show how using simple kernel descriptors over pixel attributes in video sequences achieves a great success compared to the state-of-the-art complex methods. Following the success of kernel descriptors (Bo, et al., 2010) on object recognition task, we put forward the claim that using 3D kernel descriptors could be an effective way to project the low-level features on 3D patches into a powerful structure which can effectively describe the scene. We build our system upon the 3D Gradient kernel descriptor and construct a hierarchical framework by employing efficient match kernel (EMK) (Bo, and Smin-chisescu, 2009) and hierarchical kernel descriptors (HKD) as higher levels to abstract the mid-level features for classification. Through extensive experiments we demonstrate the proposed approach achieves superior performance on four standard RGB-D sequences benchmarks.
机译:由于类内差异和动作的复杂性,人类动作识别是一项重要且具有挑战性的任务,这是由于所执行动作的样式和持续时间不同而引起的。以前的作品大多集中在深度或RGB数据上,以了解视频中的形状和运动提示,但无法同时利用两个通道中的丰富信息。在本文中,我们使用内核描述符研究了从RGB和深度序列中进行RGB-D动作识别的问题。内核描述符提供了一个统一而优雅的框架,可将像素级属性转换为有关视频中已执行操作的描述性信息。我们展示了与最新的复杂方法相比,对视频序列中的像素属性使用简单的内核描述符如何取得巨大成功。继内核描述符(Bo等,2010)在对象识别任务上取得成功之后,我们提出了使用3D内核描述符可能是将3D补丁中的低级特征投影为强大结构的有效方法的主张。可以有效地描述场景。我们基于3D渐变内核描述符构建我们的系统,并通过使用高效匹配内核(EMK)(Bo和Smin-chisescu,2009)和分层内核描述符(HKD)作为较高级别来抽象化中层功能,从而构建了一个分层框架用于分类。通过广泛的实验,我们证明了所提出的方法在四个标准RGB-D序列基准上均具有出色的性能。

著录项

  • 来源
    《Computer vision and image understanding》 |2016年第3期|14-23|共10页
  • 作者单位

    Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA;

    Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA;

    Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA,College of Computer and Information Science, Northeastern University, Boston, MA, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    RGB-D action; Action recognition; Kernel descriptor;

    机译:RGB-D动作;动作识别;内核描述符;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号