首页> 外文期刊>Computer vision and image understanding >Resolving vision and language ambiguities together: Joint segmentation & prepositional attachment resolution in captioned scenes
【24h】

Resolving vision and language ambiguities together: Joint segmentation & prepositional attachment resolution in captioned scenes

机译:共同解决视觉和语言的歧义:字幕场景中的联合分割和介词依附解析

获取原文
获取原文并翻译 | 示例

摘要

We present an approach to simultaneously perform semantic segmentation and prepositional phrase attachment resolution for captioned images. Some ambiguities in language cannot be resolved without simultaneously reasoning about an associated image. If we consider the sentence "I shot an elephant in my pajamas", looking at language alone (and not using common sense), it is unclear if it is the person or the elephant wearing the pajamas or both. Our approach produces a diverse set of plausible hypotheses for both semantic segmentation and prepositional phrase attachment resolution that are then jointly re-ranked to select the most consistent pair. We show that our semantic segmentation and prepositional phrase attachment resolution modules have complementary strengths, and that joint reasoning produces more accurate results than any module operating in isolation. Multiple hypotheses are also shown to be crucial to improved multiple-module reasoning. Our vision and language approach significantiy outperforms the Stanford Parser (De Marneffe et al., 2006) by 17.91% (28.69% relative) and 12.83% (25.28% relative) in two different experiments. We also make small improvements over DeepLab-CRF (Chen et al., 2015).
机译:我们提出了一种方法,同时对字幕图像执行语义分割和介词短语附件解析。如果不同时推理关联的图像,就无法解决语言中的某些歧义。如果我们考虑“我穿着睡衣射杀了一头大象”这句话,仅看语言(不使用常识),则不清楚是穿着睡衣的人还是大象,还是两者都穿。我们的方法为语义分割和介词短语依附关系分解生成了一系列合理的假设,然后联合重新排序以选择最一致的对。我们表明,语义分割和介词短语附件解决模块具有互补的优势,并且联合推理比任何单独运行的模块都能产生更准确的结果。多重假设对于改善多模块推理也至关重要。在两个不同的实验中,我们的视觉和语言方法明显优于Stanford Parser(De Marneffe等人,2006),分别为17.91%(相对28.69%)和12.83%(相对25.28%)。我们还对DeepLab-CRF进行了一些小的改进(Chen等,2015)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号