首页> 外文期刊>Computer vision and image understanding >Informative sample generation using class aware generative adversarial networks for classification of chest Xrays
【24h】

Informative sample generation using class aware generative adversarial networks for classification of chest Xrays

机译:使用类意识生成的对冲网络进行信息生成,用于胸部XRAYS分类

获取原文
获取原文并翻译 | 示例

摘要

Training robust deep learning (DL) systems for disease detection from medical images is challenging due to limited images covering different disease types and severity. The problem is especially acute, where there is a severe class imbalance. We propose an active learning (AL) framework to select most informative samples for training our model using a Bayesian neural network. Informative samples are then used within a novel class aware generative adversarial network (CAGAN) to generate realistic chest xray images for data augmentation by transferring characteristics from one class label to another. Experiments show our proposed AL framework is able to achieve state-of-the-art performance by using about 35% of the full dataset, thus saving significant time and effort over conventional methods.
机译:由于覆盖不同疾病类型和严重程度的图像有限,训练来自医学图像的疾病检测的强大深度学习(DL)系统具有挑战性。 问题尤其剧烈,在那里存在严重的阶级不平衡。 我们提出了一个主动学习(AL)框架,以选择使用贝叶斯神经网络培训我们的模型的大多数信息样本。 然后在新型类别意识生成的对冲网络(Cagan)内使用信息示例,以通过将一个类标签传输到另一个类标签的特征来生成用于数据增强的现实胸X射线图像。 实验表明我们所提出的AL框架可以通过使用大约35%的完整数据集来实现最先进的性能,从而节省了传统方法的显着时间和精力。

著录项

  • 来源
    《Computer vision and image understanding》 |2019年第7期|57-65|共9页
  • 作者单位

    Signal Processing Laboratory (LT55) Ecole Polytechnique Federate de Lausanne (EPFL-STI-IEL-LT55) Station 11 1015 Lausanne Switzerland Center for Biomedical Imaging Lausanne Switzerland;

    Department of Diagnostic Interventional and Pediatric Radiology (DIPR) Inselspital Bern University Hospital University of Bern Switzerland;

    University Institute for Diagnostic Interventional and Pediatric Radiology University Hospital Bern Switzerland;

    University Institute for Diagnostic Interventional and Pediatric Radiology University Hospital Bern Switzerland;

    University Institute for Diagnostic Interventional and Pediatric Radiology University Hospital Bern Switzerland;

    Signal Processing Laboratory (LT55) Ecole Polytechnique Federate de Lausanne (EPFL-STI-IEL-LT55) Station 11 1015 Lausanne Switzerland Department of Radiology University Hospital Center (CHUV) University of Lausanne (UNIL) Lausanne Switzerland;

    University of Bern Bern 3014 Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    GAN; Active learning; Classification; Chest xray; Informative samples;

    机译:甘;主动学习;分类;胸部X射线;信息样本;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号