首页> 外文期刊>Computer vision and image understanding >Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function
【24h】

Joint identification-verification for person re-identification: A four stream deep learning approach with improved quartet loss function

机译:对人的联合识别验证重新识别:一种四流深入学习方法,具有改进的四重奏损失功能

获取原文
获取原文并翻译 | 示例

摘要

A deep four-stream convolutional neural network (CNN) is proposed for person re-identification (re-ID) to overcome the poor generalisation of the traditional triplet loss function. Specifically, the proposed method is a four-stream network, taking four input images where two images are from the same identity and the other two are from different identities. The network uses dual identification and verification losses in a single framework to minimise the intra-class distance while maximising the inter-class distance. Extensive experiments illustrate the state-of-the-art performance of the proposed approach on seven challenging person re-ID datasets: VIPeR, CUHK03, CUHK01, PRID2011, i-LIDS, Market-1501, and DukeMTMC-relD. In addition, we build a five-stream network and a four-stream network with an alternate formulation of positive and negative pairs to further explore the performance of the proposed four-stream network. We also demonstrate promising performance when training and testing sets are from different domains, highlighting the real-world applicability of the approach.
机译:为人重新识别(RE-ID)提出了一个深四流卷积神经网络(CNN),以克服传统三重态损失功能的差的概率。具体地,所提出的方法是四流网络,采用四个输入图像,其中两个图像来自相同的标识,另一两个来自不同的标识。网络在单个框架中使用双重识别和验证损耗,以最小化帧内距离,同时最大化帧间距离。广泛的实验说明了七个具有挑战性的人物重新ID数据集:VIPER,CUHK03,CUHK01,PRID2011,I-LIDS,Market-1501和Dukemtmc-Reld的所挑战性的最新性能。此外,我们构建了一个五流网络和四流网络,具有正面和负对的替代配方,以进一步探索所提出的四流网络的性能。当培训和测试集来自不同的域时,我们还展示了有希望的性能,突出了这种方法的实际适用性。

著录项

  • 来源
    《Computer vision and image understanding》 |2020年第8期|102989.1-102989.11|共11页
  • 作者单位

    Signal Processing Artificial Intelligence and Vision Technologies (SAIVT) Queensland University of Technology (QUT) Brisbane QLD 4000 Australia;

    Signal Processing Artificial Intelligence and Vision Technologies (SAIVT) Queensland University of Technology (QUT) Brisbane QLD 4000 Australia;

    Signal Processing Artificial Intelligence and Vision Technologies (SAIVT) Queensland University of Technology (QUT) Brisbane QLD 4000 Australia;

    Signal Processing Artificial Intelligence and Vision Technologies (SAIVT) Queensland University of Technology (QUT) Brisbane QLD 4000 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Person re-identification; Improved quartet loss; Quartet loss; Triplet loss; Verification; Identification;

    机译:人重新识别;改善四重奏损失;四重奏损失;三重损失;确认;鉴别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号