首页> 外文期刊>Computer vision and image understanding >Boosting Hankel matrices for face emotion recognition and pain detection
【24h】

Boosting Hankel matrices for face emotion recognition and pain detection

机译:促进河口矩阵面部情感识别和疼痛检测

获取原文
获取原文并翻译 | 示例

摘要

Studies in psychology have shown that the dynamics of emotional expressions play an important role in face emotion recognition in humans. Motivated by these studies, in this paper the dynamics of face expressions are modeled and used for automatic emotion recognition and pain detection. Given a temporal sequence of face images, several appearance-based descriptors are computed at each frame. Over the sequence, the descriptors corresponding to the same feature type and spatial scale define a time series. The Hankel matrix built upon each time series is used to represent the dynamics of face expressions with respect to the used feature-scale pair. The set of Hankel matrices obtained by varying the feature type and the scale is used within a boosting approach to train a strong classifier. During training, random subspace projection is adopted for feature and scale selection. Experiments on two challenging publicly available datasets show that the dynamics of appearance-based face expression representations can be used to discriminate among different emotion classes and, within a boosting approach, attain state-of-the-art average accuracy values in classification.
机译:心理学研究表明,情绪表达的动态在人类的情感识别方面发挥着重要作用。这些研究的动机,在本文中,面部表达的动态被建模并用于自动情绪识别和疼痛检测。鉴于面部图像的时间序列,在每个帧处计算几个基于外观的描述符。通过序列,对应于相同特征类型和空间刻度的描述符定义时间序列。在每个时间序列时构建的Hankel矩阵用于表示相对于使用的特征尺度对的面部表达式的动态。通过改变特征类型和刻度获得的一组Hankel矩阵在促进方法中使用来培训强分类器。在培训期间,采用随机子空间投影来进行特征和比例选择。两个具有挑战性的公共数据集的实验表明,基于外观的面部表达式表示的动态可用于区分不同的情感课程,并且在升压方法中,在分类中获得最先进的平均精度值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号