首页> 外文期刊>Computer vision and image understanding >A label noise tolerant random forest for the classification of remote sensing data based on outdated maps for training
【24h】

A label noise tolerant random forest for the classification of remote sensing data based on outdated maps for training

机译:基于过时地图的标签噪声容忍随机森林用于遥感数据分类

获取原文
获取原文并翻译 | 示例

摘要

Supervised classification of remotely sensed images is a classical method for change detection. The task requires training data containing images with known class labels. If these labels are acquired from an outdated map, the classifier must cope with errors in the training labels. Several papers state that the random forest classifier is robust with respect to these errors (label noise) by design, but for a large amount of label noise or for noise affecting different classes differently this assumption does not necessarily hold. In this paper we suggest an adaptation of the random forest classifier by integrating a model for label noise based on the idea that a training sample should not be assigned to one class only, but to all classes, each with a certain probability. The adapted random forest is embedded in an iterative scheme for the context-based classification of remote sensing data using the outdated map not only to provide the labels of the training samples, but also to support the classification process in unchanged areas. Our experiments are based on five test areas and the results show a higher accuracy using the suggested new method than using the standard random forest.
机译:遥感图像的监督分类是用于变化检测的经典方法。该任务需要训练数据,其中包含带有已知类别标签的图像。如果这些标签是从过时的地图中获取的,则分类器必须应对训练标签中的错误。几篇论文指出,随机森林分类器在设计上针对这些错误(标签噪声)具有较强的鲁棒性,但对于大量标签噪声或影响不同类别的噪声,此假设不一定成立。在本文中,我们建议通过基于标签噪声的模型进行集成来建议对随机森林分类器进行调整,该思想基于以下观点:训练样本不应仅分配给一个类别,而应该分配给所有类别,每个样本都应具有一定的概率。改编后的随机森林被嵌入到一个迭代方案中,以使用过时的地图对遥感数据进行基于上下文的分类,这不仅提供了训练样本的标签,而且还支持了不变区域中的分类过程。我们的实验基于五个测试区域,结果表明,使用建议的新方法比使用标准随机森林具有更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号