首页> 外文期刊>Computer vision and image understanding >CNN-based features for retrieval and classification of food images
【24h】

CNN-based features for retrieval and classification of food images

机译:基于CNN的食物图像检索和分类功能

获取原文
获取原文并翻译 | 示例

摘要

Features learned by deep Convolutional Neural Networks (CNNs) have been recognized to be more robust and expressive than hand-crafted ones. They have been successfully used in different computer vision tasks such as object detection, pattern recognition and image understanding. Given a CNN architecture and a training procedure, the efficacy of the learned features depends on the domain-representativeness of the training examples. In this paper we investigate the use of CNN-based features for the purpose of food recognition and retrieval. To this end, we first introduce the Food-475 database, that is the largest publicly available food database with 475 food classes and 247,636 images obtained by merging four publicly available food databases. We then define the food-domain representativeness of different food databases in terms of the total number of images, number of classes of the domain and number of examples for class. Different features are then extracted from a CNN based on the Residual Network with 50 layers architecture and trained on food databases with diverse food-domain representativeness. We evaluate these features for the tasks of food classification and retrieval. Results demonstrate that the features extracted from the Food-475 database outperform the other ones showing that we need larger food databases in order to tackle the challenges in food recognition, and that the created database is a step forward toward this end.
机译:深度卷积神经网络(CNN)学习的功能比手工制作的功能更强大和更具表现力。它们已成功用于各种计算机视觉任务,例如目标检测,模式识别和图像理解。给定一个CNN体系结构和一个训练过程,所学功能的有效性取决于训练示例的领域代表性。在本文中,我们研究了基于CNN的功能在食品识别和检索中的用途。为此,我们首先介绍Food-475数据库,这是最大的可公开获得的食物数据库,其中包含475种食物类别和247,636张图像,这些图像是通过合并四个可公开获得的食物数据库获得的。然后,我们根据图像的总数,该领域的类别数和该类别的示例数来定义不同食物数据库的食物域代表性。然后,基于具有50层架构的残差网络从CNN中提取不同的特征,并在具有不同食物域代表性的食物数据库上进行训练。我们评估这些功能用于食品分类和检索任务。结果表明,从Food-475数据库中提取的功能优于其他功能,这表明我们需要更大的食品数据库来应对食品识别方面的挑战,并且创建的数据库是朝着这一目标迈出的一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号