首页> 外文期刊>Computer vision and image understanding >PA-Search: Predicting units adaptive motion search for surveillance video coding
【24h】

PA-Search: Predicting units adaptive motion search for surveillance video coding

机译:PA-Search:预测单元自适应运动搜索,用于监控视频编码

获取原文
获取原文并翻译 | 示例

摘要

The large scale of surveillance video and the high requirement of compression in time requires a low complexity and high efficiency compression algorithm to compress surveillance video. Motion search is a very time-consuming procedure in video coding. In the recent video coding standards such as HEVC/H.265, this procedure becomes more flexible by utilizing the division structure of Coding Units (CUs) and Predicting Units (PUs). However, for surveillance videos that are often captured by fixed-view cameras, the used motion search strategy still does not make full use of their intrinsic characteristics. To address this problem, we propose a PU-Adaptive Search (PA-Search) method for surveillance videos. In PA-Search, a background model is firstly constructed for a super group of pictures and then a background-foreground representation (BFR) is derived for each frame in this group. Utilizing the BFR, PUs are classified into four categories, namely, Full Background PUs (FBPUs), Background PUs (BPUs), Foreground PUs (FPUs), and hybrid foreground-background PUs ()CPUs). In PA-Search, zero motion vector (zero-MV) and non-sub-pixel search are assigned to FBPUs and an error-tolerant search algorithm is also performed to reduce the influence of PU mis-classifications; while for non-FBPUs, adaptive search range is calculated according to the PU category and its size, and a BFR-based early-termination algorithm is also used to reduce the search complexity. Moreover, an early terminate partition algorithm is adopted by Full Background CUs to further reduce the encoding time. Experimental results demonstrate the advantage of the proposed PA-Search on HEVC reference software HM-16.0. PA-Search can reduce the number of search points and the total encoding time averagely by 66.90% and 46.69% over TZ Search, while maintaining the coding efficiency.
机译:监视视频的大规模和对时间压缩的高要求要求低复杂度和高效率的压缩算法来压缩监视视频。运动搜索是视频编码中非常耗时的过程。在诸如HEVC / H.265之类的最新视频编码标准中,该过程通过利用编码单元(CU)和预测单元(PU)的划分结构而变得更加灵活。但是,对于通常由固定视图摄像机捕获的监视视频,使用的运动搜索策略仍未充分利用其固有特性。为解决此问题,我们提出了一种用于监视视频的PU自适应搜索(PA-Search)方法。在PA搜索中,首先为一组超级图片构建背景模型,然后为该组中的每个帧导出背景-前景表示(BFR)。利用BFR,PU分为四个类别,即,全背景PU(FBPU),背景PU(BPU),前景PU(FPU)和混合前景背景PU()CPU。在PA搜索中,将零运动矢量(zero-MV)和非子像素搜索分配给FBPU,并且还执行了容错搜索算法以减少PU错误分类的影响。对于非FBPU,根据PU类别及其大小来计算自适应搜索范围,并且还使用基于BFR的提前终止算法来降低搜索复杂度。此外,全背景CU采用了提前终止划分算法,以进一步减少编码时间。实验结果证明了在HEVC参考软件HM-16.0上提出的PA-Search的优势。 PA-Search可以比TZ Search分别平均减少搜索点数和总编码时间66.90%和46.69%,同时保持编码效率。

著录项

  • 来源
    《Computer vision and image understanding》 |2018年第5期|14-27|共14页
  • 作者单位

    Peking Univ, Sch Elect Engn & Comp Sci, Natl Engn Lab Video Technol, Rm 2608,Sci Bldg 2,5 Yiheyuan Rd, Beijing 100871, Peoples R China;

    Peking Univ, Sch Elect & Comp Engn, Shenzhen Grad Sch, Rm 2604,Sci Bldg 2,5 Yiheyuan Rd, Beijing 100871, Peoples R China;

    Peking Univ, Sch Elect Engn & Comp Sci, Natl Engn Lab Video Technol, Rm 2608,Sci Bldg 2,5 Yiheyuan Rd, Beijing 100871, Peoples R China;

    Peking Univ, Sch Elect Engn & Comp Sci, Natl Engn Lab Video Technol, Rm 2608,Sci Bldg 2,5 Yiheyuan Rd, Beijing 100871, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Surveillance video coding; Motion search; Predicting unit classification; PA-Search; HEVC;

    机译:监控视频编码;运动搜索;预测单元分类;PA-搜索;HEVC;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号