首页> 外文期刊>Computer Vision, IET >Maximum simplex volume: an efficient unsupervised band selection method for hyperspectral image
【24h】

Maximum simplex volume: an efficient unsupervised band selection method for hyperspectral image

机译:最大单形体积:一种用于高光谱图像的有效无监督波段选择方法

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral imaging makes it possible to obtain object information with fine spectral resolution as well as spatial resolution, which is beneficial to a wide array of applications. However, there is a high correlation among the bands in a hyperspectral image (HSI). Band selection (BS), selecting only some representative bands to describe well the original image, is an appropriate approach to tackle this problem. In this study, the authors propose an efficient greedy-based unsupervised BS method, namely the maximum simplex volume by orthogonal-projection BS method. The main contributions are two-fold: (i) an information-lossless compressed descriptor in the Euclidean sense that can reduce the amount of redundant information in the band analysis and (ii) an orthogonal-projection-based algorithm to find the band points forming the simplex of maximum volume. The experimental results on four real HSIs demonstrate that the proposed method can achieve satisfying pixel classification performances and is computationally fast.
机译:高光谱成像使获得具有精细光谱分辨率和空间分辨率的物体信息成为可能,这对广泛的应用是有益的。但是,高光谱图像(HSI)中的波段之间具有高度相关性。仅选择一些代表性波段以很好地描述原始图像的波段选择(BS)是解决此问题的合适方法。在这项研究中,作者提出了一种有效的基于贪婪的无监督BS方法,即通过正交投影BS方法获得的最大单纯形体积。主要贡献有两个方面:(i)欧氏意义上的信息无损压缩描述符,它可以减少频带分析中的冗余信息量;以及(ii)基于正交投影的算法来查找形成频带的点最大音量的单纯形。在四个真实HSI上的实验结果表明,该方法可以实现令人满意的像素分类性能,并且计算速度快。

著录项

  • 来源
    《Computer Vision, IET》 |2019年第2期|233-239|共7页
  • 作者单位

    Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China;

    Xian Univ Posts & Telecommun, Sch Automat, Xian 710121, Shaanxi, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号