首页> 外文期刊>Computer standards & interfaces >Performance analysis of multi-core VMs hosting cloud SaaS applications
【24h】

Performance analysis of multi-core VMs hosting cloud SaaS applications

机译:托管云SaaS应用程序的多核VM的性能分析

获取原文
获取原文并翻译 | 示例

摘要

HighlightsAn analytical model to capture the dynamics and behavior of SaaS cloud services is presented. At any given workload, the model can estimate the minimum number of multi-core Virtual Machines (VMs) needed to satisfy QoS parameters.Mathematical formulas for key performance are derived. These formulas can be used for capacity engineering and scalability solutions for SaaS cloud services.Discrete Event Simulations are used to validate the analytical model.Results show that MaaS systems under heavy workload can benefit in terms of cost efficiency and system responsiveness from the deployment of multi-core VMs as opposed to single-core VMs.AbstractToday's data centers are designed to scale up to respond to the offered workload in a rapid, efficient, and effective manner, and at the same time, they must satisfy the Service Level Agreement (SLA) requirements. This opens up many interesting and challenging research issues and opportunities. The Software-as-a-Service (SaaS) is the most popular cloud service model being used these days, in which multi-core VMs are allocated efficiently to meet the offered workload, and in a way to avoid any violations to the agreed SLA. This entails the need to model SaaS services to predict the performance and overall system cost, and to estimate the required number of VM resources and their respective multi-core capacity prior to the actual deployment. To this end, we present in this paper a queuing mathematical model to study and analyze the performance of multi-core VMs hosting cloud SaaS applications. Our analytical model estimates under any offered workload the number of required multi-core VM instances needed to satisfy the Quality of Service (QoS) parameters. Our mathematical model is validated using DES (Discrete Event Simulator) simulations. Results obtained from our analysis as well as simulation models show that the proposed model is powerful and able to correctly and effectively predict the system performance and cost, and also to determine the number of VMs cores needed for SaaS services in order to achieve QoS targets under different workload conditions.
机译: 突出显示 提供了一种捕获SaaS云服务的动态和行为的分析模型。在任何给定的工作负载下,该模型都可以估计满足QoS参数所需的最少数量的多核虚拟机(VM)。 得出了关键绩效的数学公式。这些公式可用于SaaS云服务的容量工程和可伸缩性解决方案。 离散事件模拟用于验证分析模型。 结果表明,工作负载繁重的MaaS系统可以从成本效率和系统方面受益 摘要 设计了当今的数据中心o扩大规模以快速,有效和有效地响应所提供的工作负载,同时,它们必须满足服务水平协议(SLA)的要求。这带来了许多有趣且具有挑战性的研究问题和机遇。软件即服务(SaaS)是当今使用的最流行的云服务模型,其中有效分配多核VM以满足提供的工作负载,并避免违反约定的SLA。 。这就需要对SaaS服务进行建模,以预测性能和总体系统成本,并在实际部署之前估算所需的VM资源数量及其各自的多核容量。为此,我们在本文中提出一个排队数学模型,以研究和分析托管云SaaS应用程序的多核VM的性能。我们的分析模型会在任何提供的工作负载下估算满足服务质量(QoS)参数所需的所需多核VM实例的数量。我们的数学模型已使用DES(离散事件模拟器)仿真进行了验证。从我们的分析和仿真模型获得的结果表明,该模型功能强大,能够正确有效地预测系统性能和成本,并且可以确定SaaS服务所需的VM核心数,以在以下条件下实现QoS目标不同的工作负载条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号