首页> 外文期刊>Computer speech and language >Dialect Identification using Chroma-Spectral Shape Features with Ensemble Technique
【24h】

Dialect Identification using Chroma-Spectral Shape Features with Ensemble Technique

机译:用集合技术的色谱谱形状特征进行方言识别

获取原文
获取原文并翻译 | 示例

摘要

The present work proposes a text-independent dialect identification system. Generally, dialects of a language exhibit varying pronunciation styles followed in a specific geographical region. In this paper, chroma features familiar with music-related systems are employed for identification of dialects. In addition, eight significant spectral shape related features from short term spectra are computed and combined along with chroma features and named as chroma-spectral shape features. Chroma features try to aggregate spectral information and attempt to encapsulate the evidential variations, concerning timbre, correlated melody, rhythmic, and intonation patterns found prominently among dialects of few languages. The effectiveness of the proposed features and approach is evaluated on five prominent Kannada dialects spoken in Kamataka, India and internationally known standard Intonation Variation in English (IViE) dataset with nine British English dialects. Discriminative models such as, single classifier based Support Vector Machine (SVM) and ensemble based support vector machines (ESVM) are employed for classification. The proposed features have shown better performance over state-of-the-art i-vector features on both datasets. The highest recognition performance of 95.6% and 97.52% are achieved in the cases of Kannada and IViE dialect data-sets respectively using ESVM. Proposed features have also demonstrated robust performance with small sized (limited data) audio clips even in noisy conditions.
机译:本工作提出了一种独立于文本的方言识别系统。通常,语言的方言表现出不同的发音方式,然后在特定地理区域中遵循。本文采用了熟悉音乐相关系统的色度特征来识别方言。另外,从短期光谱的八种显着的频谱形状相关特征和结合色度特征,并命名为色度谱形状特征。色度特征尝试聚合光谱信息,并尝试封装关于少语言方言中的突出的微信,相关旋律,节奏和语调模式的证据变异。拟议的特征和方法的有效性是在卡马卡,印度,印度和英语(IVIE)数据集中的国际知名标准语调变异的五个突出的kannada方言,具有九个英国英语方言。基于单分类器的支持向量机(SVM)和基于集合的支持向量机(ESVM)的判别型模型用于分类。所提出的功能对两个数据集上的最先进的I载体功能显示出更好的性能。在kannada和IVIE方言数据集的情况下,最高识别性能为95.6%和97.52%,分别使用ESVM。拟议的特征也表现出强大的性能,即使在嘈杂的条件下也具有小型(有限的数据)音频剪辑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号