首页> 外文期刊>Computer speech and language >TOP-Rank: A TopicalPostionRank for Extraction and Classification of Keyphrases in Text
【24h】

TOP-Rank: A TopicalPostionRank for Extraction and Classification of Keyphrases in Text

机译:排名:用于提取和分类文本中关键词的提取和分类

获取原文
获取原文并翻译 | 示例

摘要

Keyphrase extraction is the task of extracting the most important phrases from a document. Automatic keyphrase extraction attempts to itemize a document content as metainformation and facilitate efficient information retrieval. In this paper we propose TOP-Rank, an approach for keyphrase extraction and keyphrase classification. For keyphrase extraction, we build an approach based on the position of keyphrases in the document and expand it with topical ranking of keyphrases. In particular, keyphrase extraction technique analyzes the documents and extracts keyphrases from the document by giving a higher rank to topical phrases. After keyphrase extraction, we classify keyphrases as process, material and task. Our evaluation on diverse datasets shows that TOP-Rank achieves F1-score of 0.73 for keyphrase classification improving upon state-of-the-art methods by a huge margin.
机译:关键词提取是从文档中提取最重要的短语的任务。自动关键字提取尝试将文档内容逐项列为MetainFormation并促进有效的信息检索。在本文中,我们提出了顶级,一种对关键酶提取和关键酶分类的方法。对于关键词提取,我们基于文档中的关键次数的位置构建一种方法,并通过主题排名来扩展密钥次。特别地,关键词提取技术通过向局部短语提供更高的等级来分析文档并从文档中提取关键短缺。在关键上提取后,我们将关键级别分类为过程,材料和任务。我们对各种数据集的评估显示,对于关键边缘,最高级别为重点级分类的F1分数为0.73。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号