首页> 外文期刊>Computer speech and language >Single document keyword extraction via quantifying higher-order structural features of word co-occurrence graph
【24h】

Single document keyword extraction via quantifying higher-order structural features of word co-occurrence graph

机译:单个文档关键字提取通过量化Word Co-antionrence图的高阶结构特征

获取原文
获取原文并翻译 | 示例

摘要

Keyword extraction is a building block of information retrieval. Many techniques have been developed to tackle this problem. However, most of the existing methods suffer from high computational complexity or large corpus dependency, which limits the practical applications. Indeed, given a single document, new visions and strategies are needed for keyword extraction to face the challenges. In this work, we proposed a new graph-based measure for keyword extraction, by leveraging higher-order structural features (e.g. motifs) of word co-occurrence graph. The experiments on real datasets shows superior performance of the proposed method, compared to TF-IDF and PageRank based methods. (C) 2019 Elsevier Ltd. All rights reserved.
机译:关键字提取是信息检索的构建块。已经开发了许多技术来解决这个问题。然而,大多数现有方法患有高计算复杂性或大型语料库依赖性,这限制了实际应用。实际上,鉴于单一文件,关键字提取需要新的愿景和策略来面临挑战。在这项工作中,我们提出了一种新的基于图形的基于图形提取的措施,通过利用单词共同发生图的高阶结构特征(例如图案)来进行关键字提取。与TF-IDF和基于PageRank的方法相比,实际数据集的实验显示了所提出的方法的卓越性能。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Computer speech and language》 |2019年第9期|98-107|共10页
  • 作者单位

    Southwest Petr Univ Sch Comp Sci Ctr Intelligent & Networked Syst Chengdu 610500 Sichuan Peoples R China;

    Southwest Petr Univ Sch Comp Sci Ctr Intelligent & Networked Syst Chengdu 610500 Sichuan Peoples R China;

    Southwest Petr Univ Sch Comp Sci Ctr Intelligent & Networked Syst Chengdu 610500 Sichuan Peoples R China;

    Southwest Petr Univ Sch Comp Sci Ctr Intelligent & Networked Syst Chengdu 610500 Sichuan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Word graph; Motifs; Keyword extraction;

    机译:字形图;图案;关键词提取;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号