首页> 外文期刊>Computer speech and language >Evaluating the state-of-the-art of End-to-End Natural Language Generation: The E2E NLG challenge
【24h】

Evaluating the state-of-the-art of End-to-End Natural Language Generation: The E2E NLG challenge

机译:评估端到端自然语言生成的最新技术:端到端NLG挑战

获取原文
获取原文并翻译 | 示例

摘要

This paper provides a comprehensive analysis of the first shared task on End-to-End Natural Language Generation (NLG) and identifies avenues for future research based on the results. This shared task aimed to assess whether recent end-to-end NLG systems can generate more complex output by learning from datasets containing higher lexical richness, syntactic complexity and diverse discourse phenomena. Introducing novel automatic and human metrics, we compare 62 systems submitted by 17 institutions, covering a wide range of approaches, including machine learning architectures - with the majority implementing sequence-to-sequence models (seq2seq) - as well as systems based on grammatical rules and templates. Seq2seq-based systems have demonstrated a great potential for NLG in the challenge. We find that seq2seq systems generally score high in terms of word-overlap metrics and human evaluations of naturalness - with the winning SLUG system (Juraska et al., 2018) being seq2-seq-based. However, vanilla seq2seq models often fail to correctly express a given meaning representation if they lack a strong semantic control mechanism applied during decoding. Moreover, seq2seq models can be outperformed by hand-engineered systems in terms of overall quality, as well as complexity, length and diversity of outputs. This research has influenced, inspired and motivated a number of recent studies outwith the original competition, which we also summarise as part of this paper. (C) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.
机译:本文对端到端自然语言生成(NLG)的第一个共享任务进行了全面分析,并根据结果确定了未来研究的途径。这项共同的任务旨在评估最近的端到端NLG系统是否可以通过从包含更高词汇丰富性,句法复杂性和多样话语现象的数据集中学习来产生更复杂的输出。在引入新颖的自动和人工指标后,我们比较了17个机构提交的62个系统,涵盖了广泛的方法,包括机器学习架构-大多数实现了序列到序列模型(seq2seq)-以及基于语法规则的系统和模板。基于Seq2seq的系统已显示出NLG在挑战中的巨大潜力。我们发现seq2seq系统通常在单词重叠指标和人类对自然性的评估方面得分很高-获奖的SLUG系统(Juraska等人,2018)基于seq2-seq。但是,如果香草seq2seq模型缺少在解码过程中应用的强大语义控制机制,它们通常无法正确表达给定的含义表示。此外,就整体质量,输出的复杂性,长度和多样性而言,手动工程系统可以胜过seq2seq模型。这项研究已经影响,启发并激发了许多最初的竞争以外的最新研究,我们也将其总结为本文的一部分。 (C)2019作者。由Elsevier Ltd.发行。这是CC BY许可下的开放访问文章。

著录项

  • 来源
    《Computer speech and language》 |2020年第1期|123-156|共34页
  • 作者单位

    Heriot Watt Univ Interact Lab Edinburgh Midlothian Scotland|Charles Univ Prague Fac Math & Phys Prague Czech Republic;

    Heriot Watt Univ Interact Lab Edinburgh Midlothian Scotland|Winterlight Labs Toronto ON Canada;

    Heriot Watt Univ Interact Lab Edinburgh Midlothian Scotland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号