首页> 外文期刊>Computer speech and language >End-to-end DNN based text-independent speaker recognition for long and short utterances
【24h】

End-to-end DNN based text-independent speaker recognition for long and short utterances

机译:基于端到端DNN的,与文本无关的说话人识别,可实现长话和短话

获取原文
获取原文并翻译 | 示例

摘要

Recently several end-to-end speaker verification systems based on deep neural networks (DNNs) have been proposed. These systems have been proven to be competitive for text-dependent tasks as well as for text-independent tasks with short utterances. However, for text-independent tasks with longer utterances, end-to-end systems are still outperformed by standard i-vector + PLDA systems. In this work, we present an end-to-end speaker verification system that is initialized to mimic an i-vector + PLDA baseline. The system is then further trained in an end-to-end manner but regularized so that it does not deviate too far from the initial system. In this way we mitigate overfitting which normally limits the performance of end-to-end systems. The proposed system outperforms the i-vector + PLDA baseline on both long and short duration utterances. (C) 2019 Elsevier Ltd. All rights reserved.
机译:最近,已经提出了几种基于深度神经网络(DNN)的端到端说话者验证系统。事实证明,这些系统在与文本相关的任务以及简短语音的与文本无关的任务方面具有竞争力。但是,对于语音较长的独立于文本的任务,端到端系统仍然不如标准i-vector + PLDA系统好。在这项工作中,我们介绍了一个端到端说话者验证系统,该系统已初始化为模仿i-vector + PLDA基线。然后,以端到端的方式对系统进行进一步培训,但对其进行了规范化处理,以使其不会偏离初始系统太多。通过这种方式,我们可以减轻过度拟合的情况,而过度拟合通常会限制端到端系统的性能。所提出的系统在长时和短时话语方面均优于i-vector + PLDA基线。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号