首页> 外文期刊>Computer speech and language >Deep domain adaptation for anti-spoofing in speaker verification systems
【24h】

Deep domain adaptation for anti-spoofing in speaker verification systems

机译:扬声器验证系统中的深度域自适应以防欺骗

获取原文
获取原文并翻译 | 示例

摘要

With the increasing use of voice as a biometric, it has become imperative to develop countermeasures to thwart malicious spoofing attacks on speaker recognition systems. Even though there has been a significant research effort over the last few years dedicated to the development of countermeasures to detect and deflect spoofing attacks, the problem is far from being solved. While a deep learning technique has been successfully applied in anti-spoofing research, it suffers from a data scarcity issue where large amounts of labeled training data are required to build a robust model. In this paper, we investigate a domain adaptation approach of deep architectures in both a supervised setting where we use labeled data, and in an unsupervised setting where we assume unlabeled data when transferring knowledge from the source to target domain. Specifically, we employ convolutional neural networks (CNNs) as back-end classifiers for spoofed speech detection. For supervised domain adaptation, we propose joint neural network training while allowing the weights to be shared between the source and target streams, and an additional domain regularizer. In the unsupervised domain adaptation scenario, the weights are not shared in order to explicitly model the domain shift. However, the weights are related by weight regularizers to take into account the difference between the two domains. We conduct extensive cross-database (domain mismatch) experiments using ASVspoof 2015 and BTAS 2016 datasets to demonstrate the generalization capability of the proposed deep domain architectures for spoofing detection. Experimental results reveal that the proposed architectures can generalize across databases for both supervised and unsupervised adaptation scenarios. (C) 2019 Elsevier Ltd. All rights reserved.
机译:随着语音越来越多地用作生物特征识别技术,迫切需要制定对策以阻止对说话人识别系统的恶意欺骗攻击。尽管在过去的几年中已经进行了大量的研究工作,以开发用于检测和偏转欺骗攻击的对策,但是这个问题仍未解决。虽然深度学习技术已成功应用于反欺骗研究,但它存在数据稀缺的问题,需要建立大量的训练数据才能构建可靠的模型。在本文中,我们研究了在使用标签数据的监督环境下和在将知识从源域转移到目标域时假设无标签数据的无监督环境下,深层体系结构的域适应方法。具体来说,我们采用卷积神经网络(CNN)作为欺骗性语音检测的后端分类器。对于有监督的域自适应,我们提出了联合神经网络训练,同时允许在源流和目标流之间共享权重,以及一个附加的域正则化器。在无监督的域自适应场景中,不共享权重以显式建模域移位。但是,权重由权重调整器关联,以考虑两个域之间的差异。我们使用ASVspoof 2015和BTAS 2016数据集进行了广泛的跨数据库(域不匹配)实验,以证明所提出的深度域体系结构用于欺骗检测的泛化能力。实验结果表明,对于有监督和无监督的适应方案,所提出的体系结构都可以跨数据库进行概括。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号