首页> 外文期刊>Computer speech and language >Vocal effort compensation for MFCC feature extraction in a shouted versus normal speaker recognition task
【24h】

Vocal effort compensation for MFCC feature extraction in a shouted versus normal speaker recognition task

机译:呼喊补偿与普通说话人识别任务中的MFCC特征提取有关

获取原文
获取原文并翻译 | 示例

摘要

In shouting, speakers use increased vocal effort to convey spoken messages over distance or above environmental noise. For automatic speaker recognition systems trained using normal speech, shouting causes a severe vocal effort mismatch between the enrollment and test hence reducing the recognition performance. In this study, two compensation methods are proposed to tackle the mismatch in a shouted versus normal speaker recognition task. These techniques are applied in the feature extraction stage of a speaker recognition system to modify the spectral envelopes of shouts to be closer to those in normal speech. The techniques modify the all-pole power spectrum of the MFCC computation chain with shouted-to-normal compensation filtering that is obtained using a GMM-based statistical mapping. In an evaluation using the state-of-the-art i-vector based recognition system, the proposed techniques provided considerable improvements in identification rates compared to the case when shouted speech spectra were not processed. (C) 2018 Elsevier Ltd. All rights reserved.
机译:喊叫时,说话者会加大嗓音,以传达远距离或环境噪声以上的口头信息。对于使用正常语音训练的自动说话人识别系统,喊叫会导致注册和测试之间严重的语音不匹配,从而降低了识别性能。在这项研究中,提出了两种补偿方法来解决喊话与正常说话人识别任务中的不匹配问题。这些技术被应用于说话人识别系统的特征提取阶段,以将呼喊的频谱包络修改为更接近正常语音中的呼喊。该技术通过使用基于GMM的统计映射获得的对正常补偿的喊叫声修改了MFCC计算链的全极点功率谱。在使用最新的基于i-vector的识别系统进行评估时,与未处理大声语音频谱的情况相比,所提出的技术在识别率上有相当大的提高。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号