首页> 外文期刊>Computer speech and language >Quantized Dialog - A general approach for conversational systems
【24h】

Quantized Dialog - A general approach for conversational systems

机译:量化对话-对话系统的通用方法

获取原文
获取原文并翻译 | 示例

摘要

We propose Quantized Dialog, a novel approach for the development of conversational systems. The methodology relies on the semantic quantization and clustering of the dialog utterances in order to reduce the dialog interaction space, making prediction of the next utterance more tractable. The effectiveness of this method is showcased using the goal-oriented dataset of the sixth Dialog System Technology Challenge (DSTC6). We compare the performance of Quantized Dialog based on an n-gram language model for next-utterance prediction against other models that employ popular deep-learning architectures, such as multi-layer neural network classifiers, memory networks, long short-term memory recurrent neural networks and convolutional neural networks. The experimental results demonstrate the promising potential of the new quantized approach in goal-oriented dialog prediction. (C) 2018 Elsevier Ltd. All rights reserved.
机译:我们提出了“量化对话”,一种用于开发对话系统的新颖方法。该方法依赖于对话话语的语义量化和聚类,以减少对话交互空间,从而使下一个话语的预测更容易处理。使用第六届对话系统技术挑战赛(DSTC6)的面向目标的数据集展示了该方法的有效性。我们将基于n语法语言模型的量化对话的性能进行了下一步语音预测,并将其与采用流行的深度学习体系结构的其他模型进行比较,例如多层神经网络分类器,存储网络,长期短期记忆递归神经网络和卷积神经网络。实验结果证明了新的量化方法在面向目标的对话预测中的潜在潜力。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号