首页> 外文期刊>Computer speech and language >Partially observable Markov decision processes for spoken dialog systems
【24h】

Partially observable Markov decision processes for spoken dialog systems

机译:语音对话系统的部分可观察到的马尔可夫决策过程

获取原文
获取原文并翻译 | 示例

摘要

In a spoken dialog system, determining which action a machine should take in a given situation is a difficult problem because automatic speech recognition is unreliable and hence the state of the conversation can never be known with certainty. Much of the research in spoken dialog systems centres on mitigating this uncertainty and recent work has focussed on three largely disparate techniques: parallel dialog state hypotheses, local use of confidence scores, and automated planning. While in isolation each of these approaches can improve action selection, taken together they currently lack a unified statistical framework that admits global optimization. In this paper we cast a spoken dialog system as a partially observable Markov decision process (POMDP). We show how this formulation unifies and extends existing techniques to form a single principled framework.
机译:在口语对话系统中,确定机器在给定情况下应采取的动作是一个难题,因为自动语音识别是不可靠的,因此永远无法确定已知对话的状态。口语对话系统中的许多研究都集中在减轻这种不确定性上,最近的工作集中在三种截然不同的技术上:并行对话状态假设,局部使用置信度评分和自动计划。虽然这些方法中的每一个都可以改善操作选择,但将它们综合起来目前缺乏允许全局优化的统一统计框架。在本文中,我们将语音对话系统作为部分可观察到的马尔可夫决策过程(POMDP)。我们将展示这种表述如何统一和扩展现有技术以形成一个原则框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号