首页> 外文期刊>Computer speech and language >Improving Gmm-ubm Speaker Verification Using Discriminative Feedback Adaptation
【24h】

Improving Gmm-ubm Speaker Verification Using Discriminative Feedback Adaptation

机译:使用歧视性反馈自适应改进Gmm-ubm扬声器验证

获取原文
获取原文并翻译 | 示例

摘要

The Gaussian mixture model - Universal background model (GMM-UBM) system is one of the predominant approaches for text-independent speaker verification, because both the target speaker model and the impostor model (UBM) have generalization ability to handle "unseen" acoustic patterns. However, since GMM-UBM uses a common anti-model, namely UBM, for all target speakers, it tends to be weak in rejecting impostors' voices that are similar to the target speaker's voice. To overcome this limitation, we propose a discriminative feedback adaptation (DFA) framework that reinforces the discriminability between the target speaker model and the anti-model, while preserving the generalization ability of the GMM-UBM approach. This is achieved by adapting the UBM to a target speaker dependent anti-model based on a minimum verification squared-error criterion, rather than estimating the model from scratch by applying the conventional discriminative training schemes. The results of experiments conducted on the NIST2001-SRE database show that DFA substantially improves the performance of the conventional GMM-UBM approach.
机译:高斯混合模型-通用背景模型(GMM-UBM)系统是独立于文本的说话者验证的主要方法之一,因为目标说话者模型和冒名顶替者模型(UBM)都具有处理“看不见的”声学模式的通用能力。但是,由于GMM-UBM对所有目标讲话者使用通用的反模型,即UBM,因此在拒绝与目标讲话者的声音类似的冒名顶替者的声音方面趋于薄弱。为克服此限制,我们提出了一种判别性反馈适应(DFA)框架,该框架可增强目标说话人模型与反模型之间的区别性,同时保留GMM-UBM方法的泛化能力。这是通过基于最小验证平方误差准则使UBM适应目标说话者相关的反模型而实现的,而不是通过应用常规的判别训练方案从头开始估计模型。在NIST2001-SRE数据库上进行的实验结果表明,DFA大大提高了传统GMM-UBM方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号