首页> 外文期刊>Computer speech and language >Speech separation using speaker-adapted eigenvoice speech models
【24h】

Speech separation using speaker-adapted eigenvoice speech models

机译:使用说话者自适应的本征语音模型进行语音分离

获取原文
获取原文并翻译 | 示例

摘要

We present a system for model-based source separation for use on single channel speech mixtures where the precise source characteristics are not known a priori. The sources are modeled using hidden Markov models (HMM) and separated using factorial HMM methods. Without prior speaker models for the sources in the mixture it is difficult to exactly resolve the individual sources because there is no way to determine which state corresponds to which source at any point in time. This is solved to a small extent by the temporal constraints provided by the Markov models, but permutations between sources remains a significant problem. We overcome this by adapting the models to match the sources in the mixture. We do this by representing the space of speaker variation with a parametric signal model-based on the eigenvoice technique for rapid speaker adaptation. We present an algorithm to infer the characteristics of the sources present in a mixture, allowing for significantly improved separation performance over that obtained using unadapted source models. The algorithm is evaluated on the task defined in the 2006 Speech Separation Challenge [Cooke, M.P., Lee, T.-W., 2008. The 2006 Speech Separation Challenge. Computer Speech and Language] and compared with separation using source-dependent models. Although performance is not as good as with speaker-dependent models, we show that the system based on model adaptation is able to generalize better to held out speakers.
机译:我们提出了一种基于模型的源分离系统,该系统可用于单通道语音混合,其中先验未知的精确源特性。使用隐马尔可夫模型(HMM)对源建模,并使用阶乘HMM方法进行分离。如果没有用于混合源的现有扬声器模型,则很难准确地解析各个源,因为无法确定在任何时间点哪个状态对应于哪个源。马尔可夫模型提供的时间约束在很大程度上解决了这一问题,但是源之间的置换仍然是一个重要的问题。我们通过调整模型以匹配混合物中的来源来克服这一问题。我们通过基于特征语音模型的参数信号模型来表示说话人变化的空间,从而快速实现说话人自适应。我们提出了一种算法来推断混合物中存在的源的特征,与使用不适用的源模型获得的分离性能相比,可以显着提高分离性能。该算法是根据2006年语音分离挑战赛[Cooke,M.P.,Lee,T.-W.,2008. 2006年语音分离挑战赛]中定义的任务进行评估的。计算机语音和语言],并与使用依赖于源的模型进行分离进行了比较。尽管性能不如依赖于说话者的模型好,但我们证明了基于模型自适应的系统能够更好地推广到支持说话者。

著录项

  • 来源
    《Computer speech and language》 |2010年第1期|16-29|共14页
  • 作者单位

    LabROSA, Department of Electrical Engineering, Columbia University, 500 West 120th Street, Room 1300, Mailcode 4712, New York, NY 10027, United States;

    LabROSA, Department of Electrical Engineering, Columbia University, 500 West 120th Street, Room 1300, Mailcode 4712, New York, NY 10027, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    source separation; model adaptation; eigenvoice;

    机译:源分离;模型适应;特征声音;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号