首页> 外文期刊>Computer speech and language >The user model-based summarize and refine approach improves information presentation in spoken dialog systems
【24h】

The user model-based summarize and refine approach improves information presentation in spoken dialog systems

机译:基于用户模型的汇总和细化方法改善了口语对话系统中的信息表示

获取原文
获取原文并翻译 | 示例

摘要

A common task for spoken dialog systems (SDS) is to help users select a suitable option (e.g., flight, hotel, and restaurant) from the set of options available. As the number of options increases, the system must have strategies for generating summaries that enable the user to browse the option space efficiently and successfully. In the user-model based summarize and refine approach (UMSR, Demberg and Moore, 2006), options are clustered to maximize utility with respect to a user model, and linguistic devices such as discourse cues and adverbials are used to highlight the trade-offs among the presented items. In a Wizard-of-Oz experiment, we show that the UMSR approach leads to improvements in task success, efficiency, and user satisfaction compared to an approach that clusters the available options to maximize coverage of the domain (Polifroni et al., 2003). In both a laboratory experiment and a web-based experimental paradigm employing the Amazon Mechanical Turk platform, we show that the discourse cues in UMSR summaries help users compare different options and choose between options, even though they do not improve verbatim recall. This effect was observed for both written and spoken stimuli.
机译:语音对话系统(SDS)的一项常见任务是帮助用户从可用选项集中选择合适的选项(例如,航班,酒店和餐厅)。随着选项数量的增加,系统必须具有用于生成摘要的策略,以使用户能够有效而成功地浏览选项空间。在基于用户模型的汇总和细化方法(UMSR,Demberg和Moore,2006年)中,对选项进行了聚类以最大程度地提高用户模型的实用性,并使用诸如话语提示和副词之类的语言工具来强调取舍。在提出的项目中。在“绿野仙踪”实验中,我们证明,与将可用选项进行聚类以最大化域覆盖范围的方法相比,UMSR方法可提高任务成功率,效率和用户满意度(Polifroni等,2003) 。在实验室实验和采用Amazon Mechanical Turk平台的基于Web的实验范式中,我们都表明UMSR摘要中的话语提示可以帮助用户比较不同的选项并在选项之间进行选择,即使它们并不能提高逐字记录的回忆性。书面和口头刺激都可以观察到这种效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号