首页> 外文期刊>Computer speech and language >Improved open-vocabulary spoken content retrieval with word and subword lattices using acoustic feature similarity
【24h】

Improved open-vocabulary spoken content retrieval with word and subword lattices using acoustic feature similarity

机译:使用声学特征相似性改进单词和子词格的开放式语音内容检索

获取原文
获取原文并翻译 | 示例

摘要

Spoken content retrieval will be very important for retrieving and browsing multimedia content over the Internet, and spoken term detection (STD) is one of the key technologies for spoken content retrieval. In this paper, we show acoustic feature similarity between spoken segments used with pseudo-relevance feedback and graph-based re-ranking can improve the performance of STD. This is based on the concept that spoken segments similar in acoustic feature vector sequences to those with higher/lower relevance scores should have higher/lower scores, while graph-based re-ranking further uses a graph to consider the similarity structure among all the segments retrieved in the first pass. These approaches are formulated on both word and subword lattices, and a complete framework of using them in open vocabulary retrieval of spoken content is presented. Significant improvements for these approaches with both in-vocabulary and out-of-vocabulary queries were observed in preliminary experiments.
机译:语音内容检索对于通过Internet检索和浏览多媒体内容非常重要,并且语音术语检测(STD)是语音内容检索的关键技术之一。在本文中,我们显示了与伪相关反馈一起使用的语音片段之间的声学​​特征相似性以及基于图的重新排序可以改善性病的性能。这是基于这样的概念,即在语音特征向量序列中与具有较高/较低相关性得分的语音片段相似的语音片段应具有较高/较低的得分,而基于图的重新排序还使用图来考虑所有片段之间的相似性结构在第一遍中检索。这些方法是在单词和子单词格上制定的,并提出了在语音内容的开放式词汇检索中使用它们的完整框架。在初步实验中,观察到了语音查询和语音查询对这些方法的重大改进。

著录项

  • 来源
    《Computer speech and language》 |2014年第5期|1045-1065|共21页
  • 作者单位

    Graduate Institute of Communication Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;

    Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;

    Graduate Institute of Communication Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Spoken content retrieval; Spoken term detection; Pseudo-relevance feedback; Random walk;

    机译:语音内容检索;语音术语检测;伪相关反馈;随机漫步;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号