首页> 外文期刊>Computer speech and language >Hybrid Arabic-French machine translation using syntactic re-ordering and morphological pre-processing
【24h】

Hybrid Arabic-French machine translation using syntactic re-ordering and morphological pre-processing

机译:使用句法重排序和形态学预处理的混合阿拉伯语-法语机器翻译

获取原文
获取原文并翻译 | 示例

摘要

Arabic is a highly inflected language and a morpho-syntactically complex language with many differences compared to several languages that are heavily studied. It may thus require good pre-processing as it presents significant challenges for Natural Language Processing (NLP), specifically for Machine Translation (MT). This paper aims to examine how Statistical Machine Translation (SMT) can be improved using rule-based pre-processing and language analysis. We describe a hybrid translation approach coupling an Arabic-French statistical machine translation system using the Moses decoder with additional morphological rules that reduce the morphology of the source language (Arabic) to a level that makes it closer to that of the target language (French). Moreover, we introduce additional swapping rules for a structural matching between the source language and the target language. Two structural changes involving the positions of the pronouns and verbs in both the source and target languages have been attempted. The results show an improvement in the quality of translation and a gain in terms of BLEU score after introducing a pre-processing scheme for Arabic and applying these rules based on morphological variations and verb re-ordering (VS into SV constructions) in the source language (Arabic) according to their positions in the target language (French). Furthermore, a learning curve shows the improvement in terms on BLEU score under scarce- and large-resources conditions. The proposed approach is completed without increasing the amount of training data or radically changing the algorithms that can affect the translation or training engines.
机译:与经过大量研究的几种语言相比,阿拉伯语是一种高度变形的语言,也是一种形态学上复杂的语言。因此,由于自然语言处理(NLP)尤其是机器翻译(MT)面临巨大挑战,因此可能需要良好的预处理。本文旨在研究如何使用基于规则的预处理和语言分析来改进统计机器翻译(SMT)。我们描述了一种混合翻译方法,该方法将使用Moses解码器的阿拉伯语-法语统计机器翻译系统与其他形态规则相结合,从而将源语言(阿拉伯语)的形态降低到与目标语言(法语)更接近的水平。此外,我们为源语言和目标语言之间的结构匹配引入了其他交换规则。已经尝试了两种涉及源语言和目标语言中代词和动词位置的结构变化。结果表明,在引入阿拉伯语预处理方案并基于源语言的形态变异和动词重排(将VS转换为SV构造)中应用这些规则之后,翻译质量得到改善,BLEU得分有所提高(阿拉伯语)根据其在目标语言(法语)中的位置。此外,一条学习曲线显示出在资源稀缺和资源丰富的情况下,BLEU得分的提高。在不增加训练数据量或根本不改变可能影响翻译或训练引擎的算法的情况下,完成了所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号