首页> 外文期刊>Computer speech and language >A tree does not make a well-formed sentence: Improving syntactic string-to-tree statistical machine translation with more linguistic knowledge
【24h】

A tree does not make a well-formed sentence: Improving syntactic string-to-tree statistical machine translation with more linguistic knowledge

机译:一棵树不能构成格式正确的句子:使用更多的语言知识来改进句法字符串到树的统计机器翻译

获取原文
获取原文并翻译 | 示例

摘要

Synchronous context-free grammars (SCFGs) can be learned from parallel texts that are annotated with target-side syntax, and can produce translations by building target-side syntactic trees from source strings. Ideally, producing syntactic trees would entail that the translation is grammatically well-formed, but in reality, this is often not the case. Focusing on translation into German, we discuss various ways in which string-to-tree translation models over- or undergeneralise. We show how these problems can be addressed by choosing a suitable parser and modifying its output, by introducing linguistic constraints that enforce morphological agreement and constrain subcategorisation, and by modelling the productive generation of German compounds.
机译:可以从以目标端语法进行注释的并行文本中学习同步上下文无关文法(SCFG),并且可以通过从源字符串构建目标端语法树来产生翻译。理想情况下,产生语法树将意味着翻译在语法上是格式正确的,但实际上,通常并非如此。着重于德语翻译,我们讨论了字符串到树的翻译模型过高或过泛的各种方式。我们展示了如何通过选择合适的解析器并修改其输出,引入强制执行形态学协定并限制子类别的语言约束以及对德国化合物的有效生成进行建模来解决这些问题。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号