首页> 外文期刊>Computer speech and language >From rule-based to data-driven lexical entrainment models in spoken dialog systems
【24h】

From rule-based to data-driven lexical entrainment models in spoken dialog systems

机译:从口语对话系统中的基于规则的到数据驱动的词汇夹带模型

获取原文
获取原文并翻译 | 示例

摘要

This paper presents uses a data-driven approach to improve Spoken Dialog System (SDS) performance by automatically finding the most appropriate terms to be used in system prompts. The literature shows that speakers use one another's terms (entrain) when trying to create common ground during a spoken dialog. Those terms are commonly called "primes", since they influence the interlocutors' linguistic decision-making. This approach emulates human interaction, with a system built to propose primes to the user and accept the primes that the user proposes. These primes are chosen on the fly during the interaction, based on a set of features that indicate good candidate primes. A good candidate is one that we know is easily recognized by the speech recognizer, and is also a normal word choice given the context. The system is trained to follow the user's choice of prime if system performance is not negatively affected. When system performance is affected, the system proposes a new prime. In our previous work we have shown how we can identify the prime candidates and how the system can select primes using rules. In this paper we go further, presenting a data-driven method to perform the same task. Live tests with this method show that use of on-the-fly entrainment reduces out-of-vocabulary and word error rate, and also increases the number of correctly transferred concepts.
机译:本文提出了一种数据驱动的方法,通过自动查找要在系统提示中使用的最合适的术语来提高口语对话系统(SDS)的性能。文献表明,说话者在口语对话中试图建立共同点时会使用彼此的术语(夹带)。这些术语通常称为“素数”,因为它们会影响对话者的语言决策。这种方法模拟了人与人之间的互动,该系统构建为向用户提出素数并接受用户提出的素数。这些素数是在交互过程中根据指示良好候选素数的一组功能动态选择的。好的候选者是我们知道的语音识别器容易识别的候选者,并且在上下文中也是正常的单词选择。如果系统性能未受到负面影响,则训练系统遵循用户的首选配置。当系统性能受到影响时,系统会提出一个新的质数。在我们之前的工作中,我们展示了如何识别主要候选者以及系统如何使用规则选择主要词。在本文中,我们进一步介绍了一种执行相同任务的数据驱动方法。使用此方法进行的实时测试表明,即时使用夹带可减少语音提示和单词错误率,并增加正确转移的概念的数量。

著录项

  • 来源
    《Computer speech and language》 |2015年第1期|87-112|共26页
  • 作者单位

    Spoken Language Laboratory, INESC-ID Lisboa, Rua Alves Redol 9, 1000-029 Lisboa, Portugal ,Institute Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal;

    Language Technologies Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA;

    Spoken Language Laboratory, INESC-ID Lisboa, Rua Alves Redol 9, 1000-029 Lisboa, Portugal ,Institute Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lexical entrainment; Spoken dialog systems; Data-driven model; Rule-based model;

    机译:词汇夹带;口语对话系统;数据驱动模型;基于规则的模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号