首页> 外文期刊>Computer speech and language >Interpretable parametric voice conversion functions based on Gaussian mixture models and constrained transformations
【24h】

Interpretable parametric voice conversion functions based on Gaussian mixture models and constrained transformations

机译:基于高斯混合模型和约束变换的可解释参数语音转换功能

获取原文
获取原文并翻译 | 示例

摘要

Voice conversion functions based on Gaussian mixture models and parametric speech signal representations are opaque in the sense that it is not straightforward to interpret the physical meaning of the conversion parameters. Following the line of recent works based on the frequency warping plus amplitude scaling paradigm, in this article we show that voice conversion functions can be designed according to physically meaningful constraints in such manner that they become highly informative. The resulting voice conversion method can be used to visualize the differences between source and target voices or styles in terms of formant location in frequency, spectral tilt and amplitude in a number of spectral bands.
机译:基于高斯混合模型和参量语音信号表示的语音转换功能在解释转换参数的物理意义并不直接的意义上是不透明的。遵循基于频率扭曲和幅度缩放范式的最新工作,在本文中,我们表明可以根据具有物理意义的约束条件设计语音转换功能,从而使其具有较高的信息量。所得的语音转换方法可用于可视化源和目标语音或样式之间在频率上的共振峰位置,频谱倾斜度和多个频谱带中的振幅方面的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号