首页> 外文期刊>Computer speech and language >Weighted hierarchical archetypal analysis for multi-document summarization
【24h】

Weighted hierarchical archetypal analysis for multi-document summarization

机译:用于多文档摘要的加权层次原型分析

获取原文
获取原文并翻译 | 示例

摘要

Multi-document summarization (MDS) is becoming a crucial task in natural language processing. MDS targets to condense the most important information from a set of documents to produce a brief summary. Most existing extractive multi-document summarization methods employ different sentence selection approaches to obtain the summary as a subset of sentences from the given document set. The ability of the weighted hierarchical archetypal analysis to select "the best of the best" summary sentences motivates us to use this method in our solution to multi-document summarization tasks. In this paper, we propose a new framework for various multi-document summarization tasks based on weighted hierarchical archetypal analysis. The paper demonstrates how four variant summarization tasks, including general, query-focused, update, and comparative summarization, can be modeled as different versions acquired from the proposed framework. Experiments on summarization data sets (DUC04-07, TAC08) are conducted to demonstrate the efficiency and effectiveness of our framework for all four kinds of the multi-document summarization tasks.
机译:多文档摘要(MDS)成为自然语言处理中的关键任务。 MDS的目标是从一组文档中浓缩最重要的信息,以产生简短的摘要。大多数现有的提取性多文档摘要方法采用不同的句子选择方法来从摘要中获取摘要,以作为给定文档集中句子的子集。加权层次原型分析选择“最好的”摘要语句的能力促使我们在解决多文档摘要任务的解决方案中使用此方法。在本文中,我们提出了一种基于加权层次原型分析的,用于各种多文档摘要任务的新框架。本文演示了如何将四个变体摘要任务(包括常规摘要,针对查询的摘要,更新摘要和比较摘要)建模为从建议的框架中获取的不同版本。进行了摘要数据集(DUC04-07,TAC08)的实验,以证明我们的框架针对所有四种多文档摘要任务的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号