首页> 外文期刊>Computer speech and language >New features for speech enhancement using bivariate shrinkage based on redundant wavelet filter-banks
【24h】

New features for speech enhancement using bivariate shrinkage based on redundant wavelet filter-banks

机译:基于冗余小波滤波器组的双变量收缩语音增强的新功能

获取原文
获取原文并翻译 | 示例

摘要

In most of the wavelet based speech enhancement methods, it is assumed that the wavelet coefficients are independent of each other. However, investigating the joint histogram of the wavelet coefficients reveals some dependencies among them. In this regard, Sendur proposed a probability density function (pdf) that models the relation between a wavelet coefficient of image signal and its parent. Then, this pdf is utilized to propose a bivariate shrinkage function which uses the dependencies between the child-parent wavelet coefficients of Image signals to enhance the noisy images. In this paper, we intend to find wavelet structures which are more suitable for speech enhancement based on bivariate shrinkage. We show that the dependencies between the child-parent wavelet coefficients can only be modeled rather easily up to two stages of two-channel discrete wavelet transform using the Sendur's pdf. However, the bivariate shrinkage function works better in three-channel redundant wavelet filter-bank with dilation 2, since it has a joint distribution which is similar to the Sendur's pdf up to the fourth stage of decomposition for speech signals. Furthermore, we show that three-channel higher density wavelet obtained by eliminating the downsampling part of the third channel is more suitable for the bivariate shrinkage function when it is utilized for speech enhancement. Then, appropriate filter values for three-channel higher density wavelet filter-bank are found. Moreover, we propose four-channel double density discrete wavelet filter-bank which leads to some improvement in speech enhancement results. Since the probability of speech presence is higher in lower frequencies, we suggest level-dependent bivariate shrinkage. Finally, Sendur bivariate shrinkage is optimized for speech enhancement and new methods are proposed by combining former successful methods with the bivariate shrinkage function.
机译:在大多数基于小波的语音增强方法中,假定小波系数彼此独立。然而,研究小波系数的联合直方图揭示了它们之间的一些依赖性。在这方面,Sendur提出了一种概率密度函数(pdf),该函数对图像信号的小波系数与其父级之间的关系进行建模。然后,利用该pdf提出一个二元收缩函数,该函数使用图像信号的子级小波系数之间的相关性来增强噪声图像。在本文中,我们打算基于双变量收缩找到更适合语音增强的小波结构。我们表明,使用Sendur的pdf,最多只能很容易地建模多达两个阶段的两通道离散小波变换的子母小波系数之间的依存关系。但是,双变量收缩函数在带有扩张2的三通道冗余小波滤波器组中效果更好,因为它的联合分布与Sendur的pdf相似,直到语音信号分解的第四阶段为止。此外,我们表明通过消除第三通道的下采样部分而获得的三通道高密度小波在用于语音增强时更适合于双变量收缩函数。然后,找到适合于三通道高密度小波滤波器组的滤波器值。此外,我们提出了四通道双密度离散小波滤波器组,它可以使语音增强结果有所改善。由于在较低频率下出现语音的可能性较高,因此我们建议依赖于级别的双变量收缩。最后,针对语音增强对Sendur二元收缩进行了优化,并通过将成功的方法与二元收缩功能相结合,提出了新的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号