首页> 外文期刊>Computer speech and language >Spoken language understanding and interaction: machine learning for human-like conversational systems
【24h】

Spoken language understanding and interaction: machine learning for human-like conversational systems

机译:口语理解和互动:类人对话系统的机器学习

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the interest in research in speech understanding and spoken interaction has soared due to the emergence of virtual personal assistants. However, while the ability of these agents to recognise conversational speech is maturing rapidly, their ability to understand and interact is still limited. At the same time we have witnessed the development of the number of models based on machine learning that made a huge impact on spoken language understanding accuracies and the interaction quality overall. This special issue brings together a number of articles that tackle different aspects of spoken language understanding and interaction: clarifications in dialogues, adaptation to different domains, semantic tagging and error handling. These studies all have a common purpose of building human-like conversational systems.
机译:近年来,由于虚拟个人助理的出现,对语音理解和语音交互研究的兴趣激增。但是,尽管这些代理识别对话语音的能力迅速成熟,但他们的理解和交互能力仍然受到限制。同时,我们见证了基于机器学习的模型数量的发展,这些模型对口语理解的准确性和整体交互质量产生了巨大影响。本期特刊汇集了许多涉及口语理解和互动的不同方面的文章:对话中的澄清,对不同领域的适应,语义标记和错误处理。这些研究都具有建立类似人的会话系统的共同目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号