首页> 外文期刊>Computer speech and language >Acoustic model training based on node-wise weight boundary model for fast and small-footprint deep neural networks
【24h】

Acoustic model training based on node-wise weight boundary model for fast and small-footprint deep neural networks

机译:基于节点权重边界模型的快速和小足迹深度神经网络的声学模型训练

获取原文
获取原文并翻译 | 示例

摘要

Our goal for this study is to enable the development of discrete deep neural networks (NNs), some parameters of which are discretized, as small-footprint and fast NNs for acoustic models. Three essential requirements should be met for achieving this goal; 1) the reduction in discretization errors, 2) implementation for fast processing and 3) node-size reduction of DNNs. We propose a weight-parameter model and its training algorithm for 1), an implementation scheme using a look-up table on general-purpose CPUs for 2), and a layer-biased node-pruning method for 3). The first proposed method can set proper boundaries of discretization at each NN node, resulting in reduction in discretization errors. The second method can reduce the memory usage of NNs within the cache size of the CPU by encoding the parameters of NNs. The last method can reduce the network size of the quantized DNNs by measuring the activity of each node at each layer and pruning them with a layer-dependent score. Experiments with 2-bit discrete NNs showed that our training algorithm maintained almost the same word accuracy as with 8-bit discrete NNs. We achieved a 95% reduction of memory usage and a 74% increase in speed of an NN's forward calculation.
机译:我们这项研究的目标是实现离散深度神经网络(NNs)的开发,该模型的一些参数被离散化,例如用于声学模型的小尺寸和快速NN。为了实现这一目标,应满足三个基本要求; 1)减少离散化误差,2)实现快速处理,以及3)减少DNN的节点大小。我们针对1)提出了权重参数模型及其训练算法,针对2)提出了使用通用CPU上的查找表的实现方案,针对3)提出了基于层偏置的节点修剪方法。第一个提出的方法可以在每个NN节点设置适当的离散化边界,从而减少离散化误差。第二种方法可以通过对NNs的参数进行编码来减少CPU缓存大小内的NNs的内存使用量。最后一种方法可以通过测量每个节点在每一层的活动并用与层相关的分数对它们进行修剪来减小量化DNN的网络大小。 2位离散NN的实验表明,我们的训练算法保持与8位离散NN几乎相同的词精度。我们实现了95%的内存使用量减少和NN的前向计算速度提高了74%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号