首页> 外文期刊>Computer speech and language >On integrating a language model into neural machine translation
【24h】

On integrating a language model into neural machine translation

机译:关于将语言模型集成到神经机器翻译中

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in end-to-end neural machine translation models have achieved promising results on high-resource language pairs such as En→ Fr and En→ De. One of the major factor behind these successes is the availability of high quality parallel corpora. We explore two strategies on leveraging abundant amount of monolingual data for neural machine translation. We observe improvements by both combining scores from neural language model trained only on target monolingual data with neural machine translation model and fusing hidden-states of these two models. We obtain up to 2 BLEU improvement over hierarchical and phrase-based baseline on low-resource language pair, Turkish→ English. Our method was initially motivated towards tasks with less parallel data, but we also show that it extends to high resource languages such as Cs→ En and De→ En translation tasks, where we obtain 0.39 and 0.47 BLEU improvements over the neural machine translation baselines, respectively.
机译:端到端神经机器翻译模型的最新进展在诸如En→Fr和En→De的高资源语言对上取得了可喜的结果。这些成功背后的主要因素之一是高质量并行语料库的可用性。我们探索两种利用大量单语数据进行神经机器翻译的策略。通过将仅在目标单语数据上训练的神经语言模型的得分与神经机器翻译模型相结合,并融合这两种模型的隐藏状态,我们观察到了改进。我们在低资源语言对(土耳其语→英语)上,相对于基于层次结构和基于短语的基准,最多获得2个BLEU改进。我们的方法最初是为处理并行数据较少的任务而设计的,但同时我们也表明,该方法可以扩展到高资源语言,例如Cs→En和De→En翻译任务,与神经机器翻译基线相比,它们在BLEU方面的改进分别为0.39和0.47,分别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号