首页> 外文期刊>Computer networks >Smart computational offloading for mobile edge computing in next-generation Internet of Things networks
【24h】

Smart computational offloading for mobile edge computing in next-generation Internet of Things networks

机译:下一代物联网网络中移动边缘计算的智能计算卸载

获取原文
获取原文并翻译 | 示例

摘要

Limited battery and computing resources of mobile devices (MDs) induce performance limitations in mobile edge computing (MEC) networks. Computational offloading has the capability to provide computing and storage resources to MDs for resource-intensive tasks execution. Therefore, to minimize energy consumption and service delay, MDs offload the resource-intensive tasks to nearby mobile edge server (MES) for execution . However, due to time varying network conditions and limited computing resources at MES also, the offloading decision taken by MDs may not achieve the lowest cost. In this paper, we propose an energy efficient and faster deep learning based offloading technique (EFDOT) to minimize the overall cost of MDs. We formulate a cost function which considers the energy consumption and service delay of MDs, radio resources, energy consumption and delay due to task partitioning, and computing resources of the MDs and MESs. Due to high computational overhead of this comprehensive cost function, we generate a training dataset to train a deep neural network (DNN) in order to make the decision making process faster. The proposed work finds the optimal number of components, task partitioning, and fine-grained offloading policy simultaneously. We formulate the fine-grained offloading decision problem in MEC as multi-label classification problem and propose EFDOT to minimize the computation and offloading overhead. The simulation results show high accuracy of the DNN and high performance of EFDOT in terms of energy consumption, service delay, and battery life.
机译:电池电池和计算资源的移动设备(MDS)在移动边缘计算(MEC)网络中诱导性能限制。计算卸载具有能够为MDS提供计算和存储资源以进行资源密集型任务执行。因此,为了最大限度地减少能量消耗和服务延迟,MDS将资源密集型任务卸载到附近的移动边缘服务器(MES)以进行执行。然而,由于网络条件的时间变化和MES的计算资源有限,MDS占用的卸载决定可能无法达到最低成本。在本文中,我们提出了基于能量效率和更快的基于深度学习的卸载技术(EFDOT),以最大限度地减少MD的总成本。我们制定了一种成本函数,该函数考虑了MDS,无线电资源,能源消耗和由于任务分区而延迟的能耗和服务延迟,以及MDS的计算资源和混乱。由于这种综合成本函数的高计算开销,我们生成培训数据集以培训深度神经网络(DNN),以便更快地进行决策过程。建议的工作同时查找最佳的组件,任务分区和细粒度卸载策略。我们将MEC中的细粒度卸载决策问题作为多标签分类问题,并提出EFDOT以最小化计算和卸载开销。仿真结果表明,在能耗,服务延迟和电池寿命方面,DNN的高精度和EFDOT的高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号