首页> 外文期刊>Computer networks >Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions
【24h】

Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions

机译:边缘和云计算中的任务卸载:数学,人工智能与控制理论解决方案的调查

获取原文
获取原文并翻译 | 示例

摘要

Next generation communication networks are expected to accommodate a high number of new and resourcevoracious applications that can be offered to a large range of end users. Even though end devices are becoming more powerful, the available local resources cannot cope with the requirements of these applications. This has created a new challenge called task offloading, where computation intensive tasks need to be offloaded to more resource powerful remote devices. Naturally, the Cloud Computing is a well-tested infrastructure that can facilitate the task offloading. However, Cloud Computing as a centralized and distant infrastructure creates significant communication delays that cannot satisfy the requirements of the emerging delay-sensitive applications. To this end, the concept of Edge Computing has been proposed, where the Cloud Computing capabilities are repositioned closer to the end devices at the edge of the network. This paper provides a detailed survey of how the Edge and/or Cloud can be combined together to facilitate the task offloading problem. Particular emphasis is given on the mathematical, artificial intelligence and control theory optimization approaches that can be used to satisfy the various objectives, constraints and dynamic conditions of this end-to-end application execution approach. The survey concludes with identifying open challenges and future directions of the problem at hand.
机译:预计下一代通信网络将适应大量新的和资源贪婪的应用程序,可以提供给大量最终用户。尽管最终设备变得越来越强大,但可用的本地资源不能应对这些应用的要求。这创造了一个名为Task Offload的新挑战,其中计算密集型任务需要卸载到更多资源强大的远程设备。当然,云计算是一个测试良好的基础设施,可以促进任务卸载。但是,作为集中式和遥远的基础架构的云计算会产生显着的通信延迟,无法满足新出现的延迟敏感应用的要求。为此,已经提出了边缘计算的概念,其中云计算能力将重新定位到网络边缘的最终设备。本文提供了对如何组合联合的边缘和/或云的详细调查,以促进任务卸载问题。特别强调数学,人工智能和控制理论优化方法,可用于满足这种端到端应用程序执行方法的各种目标,约束和动态条件。该调查结束了,识别出境内问题的开放挑战和未来方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号