首页> 外文期刊>Computer networks >HTTP-level e-commerce data based on server access logs for an online store
【24h】

HTTP-level e-commerce data based on server access logs for an online store

机译:基于服务器访问日志的HTTP级电子商务数据用于在线商店

获取原文
获取原文并翻译 | 示例

摘要

Web server logs have been extensively used as a source of data on the characteristics of Web traffic and users' navigational patterns. In particular, Web bot detection and online purchase prediction using methods from artificial intelligence (AI) are currently key areas of research. However, in reality, it is hard to obtain logs from actual online stores and there is no common dataset that can be used across different studies. Moreover, there is a lack of studies exploring Web traffic over a longer period of time, due to the unavailability of long-term data from server logs.The need to develop reliable models of Web traffic, Web user navigation, and e-customer behaviour calls for an up-to-date, large-volume e-commerce dataset on Web traffic. Similarly, AI problems require a sufficient amount of solid, real-life data to train and validate new models and methods. Thus, to meet a demand of a publicly available long-term e-commerce dataset, we collected access log data describing the operation of an online store over a six-month period. Using a program written in the C# language, data were aggregated, transformed, and anonymized. As a result, we release this EClog dataset in CSV format, which covers 183 days of HTTP-level e-commerce traffic. The data will be beneficial for research in many areas, including computer science, data science, management, and sociology.
机译:Web服务器日志已被广泛地用作Web流量和用户的导航模式的特征的数据源。特别地,使用来自人工智能(AI)的方法的网络机器人检测和在线购买预测是目前研究的关键研究领域。但是,实际上,很难从实际在线商店获取日志,并且没有可以在不同的研究中使用的公共数据集。此外,由于来自服务器日志的长期数据,缺乏在较长时间内探索Web流量的研究。需要开发Web流量,Web用户导航和电子客户行为的可靠模型在Web流量上呼叫最新,大批量的电子商务数据集。同样,AI问题需要足够量的固体,现实生活数据来训练和验证新的模型和方法。因此,为了满足公开可用的长期电子商务数据集的需求,我们收集了在六个月内完成描述在线商店的操作的登录数据。使用在C#语言中编写的程序,数据被聚合,转换和匿名。因此,我们以CSV格式发布了此Eclog数据集,其涵盖了HTTP级电子商务流量的183天。数据将对许多领域的研究有利,包括计算机科学,数据科学,管理和社会学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号